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Abstract

In a stochastic decision environment, di¤erences in information can lead rational decision

makers facing the same stochastic technology and the same markets to make di¤erent pro-

duction choices. E¢ ciency and productivity measurement in such a setting can be seriously

and systematically biased by the manner in which the stochastic technology is represented.

For example, conventional production frontiers implicitly impose the restriction that infor-

mation di¤erences have no e¤ect on the way risk-neutral decision makers utilize the same

input bundle. The result is that rational and e¢ cient ex ante production choices can be

mistakenly characterized as ine¢ cient �informational di¤erences are mistaken for di¤erences

in technical e¢ ciency. This paper uses simulation methods to illustrate the type and magni-

tude of empirical errors that can emerge in e¢ ciency analysis as a result of overly restrictive

representations of production technologies.



1 Introduction

E¢ ciency studies typically specify an e¢ cient frontier that is generated by either a primal

or a dual representation of a nonstochastic technology. E¢ ciency is then measured relative

to an estimated version of this nonstochastic frontier. The two most widely-used estimation

approaches are data envelopment analysis (DEA) and stochastic frontier analysis (SFA).

DEA primarily involves the use of linear programming methods to identify a piecewise

linear surface that envelops the observed data. Typically, it makes no allowance for measure-

ment errors and other sources of statistical noise. All deviations from the estimated frontier

are attributed to ine¢ ciency (Färe, Grosskopf, Lovell, 1985, 1994; Coelli, Rao, O�Donnell

and Battese, 2005).

SFA parametrizes the nonstochastic frontier and estimates the unknown parameters using

econometric techniques. A symmetric random variable is usually included to account for

statistical noise (hence the term stochastic frontier analysis), and either �xed parameters

or one-sided random variables are used to account for ine¢ ciency (Kumbhakar and Lovell,

2000).

Even though it is well recognized, particularly by SFA proponents, that a bad operat-

ing environment can make an e¢ cient �rm appear as though it were operating inside an

estimated e¢ ciency frontier, most of this literature lacks an explicit recognition that pro-

duction invariably takes place under conditions of uncertainty. With limited exceptions

(e.g., Land, Lovell, and Thore, 1994; Olesen and Petersen, 1995; Gong and Sun, 1995; Post,

Cherchye, and Kuosamen, 2002), DEA models and estimation techniques are nonstochas-

tic.1 And although SFA models are stochastic, their stochastic elements arise primarily

from econometric concerns (measurement error, missing variables) and not as a response

to the stochastic decision environment in which �rms actually operate. In the few models

where risk is explicitly recognized, latent variables representing uncertainty are subsumed

into the noise and/or ine¢ ciency error terms. Convenient distributional assumptions are

then used to ensure compliance with stylized facts concerning uncertain production (e.g.,

1More precisely, they are intended to represent nonstochastic frontiers. Banker (1993) has shown how

proper distributional assumptions on ine¢ ciency yields a statistical interpretation of DEA models.
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Battese, Rambaldi and Wan, 1997; Kumbhakar, 2002).

This empirical practice thus ignores the fundamental role that a stochastic decision en-

vironment can play in framing and conditioning producer decisions, and thus observed out-

comes. Rational producers who operate in a stochastic world choose to operate at points

of tangency between their ex ante preferences and the frontier of the stochastic technology.

In this paper, we show that failure to account properly for the stochastic elements of the

producer decision environment can lead to spurious measures of ine¢ ciency.

The paper is organized as follows. In Section 2, we specify a common stochastic technol-

ogy for a population of �rms that potentially have di¤erent risk attitudes and information

sets, and potentially experience di¤erent ex post production environments. All �rms are as-

sumed to act rationally, meaning they maximize an ex ante preference function subject to a

stochastic technology contraint. Thus, they are both technically and allocatively e¢ cient.

In Section 3, we use a simple numerical example to show how di¤erent preferences and

information sets can lead to large variations in optimal input-output choices. Thus, we show

that the stochastic nature of the decision environment can give rise to the type of observed

heterogeneity in input usage that economists often attribute to bounded rationality (for ex-

ample, satis�cing), agency and monitoring concerns, incomplete contracting, or hierarchical

decision-making.

In Section 4, we construct, by simulation methods, several data sets on rational single-

input single-output �rms. Then we apply and evaluate the performance of conventional

DEA and SFA estimators. Our rationality assumption ensures that there is no technical

ine¢ ciency to be measured in the data. However, when standard frontier methods (both

DEA and SFA) are used, we obtain technical ine¢ ciency estimates that are non-zero and

similar in magnitude to those commonly reported in the empirical e¢ ciency literature. When

the same methods are used to estimate a representation of the technology that explicitly

recognizes the inherently uncertain decision environment, all �rms are found to be fully

e¢ cient. Thus, the problem lies with the restrictive speci�cation of the technology, not with

the DEA and SFA estimators.

In Section 5 we o¤er some concluding comments.
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2 Model

In contrast to the e¢ ciency-measurement literature, the decision theory and modern �nancial

economics literatures, both of which have their antecedents in Savage (1954), Arrow (1953)

and Debreu (1952), assume an inherently uncertain decision environment. Uncertainty is

modeled by a set of states of �Nature�, and economic variables, such as production and con-

sumption, are treated as acts that map that set of states to an outcome space (typically, the

bounded reals). It was the genius of Arrow and Debreu to recognize that analysis developed

in nonstochastic economics transfers directly, and with little or no change, into this sto-

chastic decision environment once ex ante preferences and technologies are properly de�ned.

Our goal is to investigate, in an Arrow-Debreu framework, the consequences of a stochastic

decision environment for standard practice in empirical ex post e¢ ciency measurement.

The two key components of the model are the representation of the production technology

and the description of �rm behaviour. The production technology de�nes nonstochastic

input and stochastic output combinations that are technically feasible. Firms having access

to this technology make production choices that re�ect their risk preferences and beliefs

concerning the relative probabilies of di¤erent states of Nature.

2.1 The Technology

All �rms have access to a common stochastic production technology where a nonstochastic

input, denoted by x 2 <+ (the positive reals), is used to produce a stochastic output, denoted

by ~z. Uncertainty is resolved by Nature making a choice from a state space, 
: For the sake

of a simple exposition that corresponds to our simulation experiments, we take 
 = f1; 2g :

The arguments presented below, however, generalize to arbitrary 
:2 If Nature picks s from


; then the realized or ex post value of ~z is denoted by zs:

Production activities take place over two time periods: in period 0 the producer picks (ex

ante) the nonstochastic input x; in period 1 Nature chooses from 
 to resolve uncertainty.

For realization s 2 
; the ex post realization of stochastic output is given by the Cobb-
2In particular, 
 can be either �nite or in�nite. In practice, the only change in what follows is in terms

of the derivative concepts used.
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Douglas function

ln zs = b
�1 [lnxs � ln as] ; (1)

where b � 1 is a parameter whose interpretation will be apparent shortly, and xs is the

amount of the nonstochastic scalar input that is committed in period 0 to production in state

of Nature s. This technology, except in a limiting case treated below, is what Chambers and

Quiggin (2000) have referred to as state-allocable.

The terms as � 0 are open to at least two distinct but related interpretations. First,

they can be thought of as technical parameters that are speci�c to the production of output

in state s: A second interpretation, and the one we give them in this paper, is that they

are ex post realizations of an unobservable scalar random variable that is within Nature�s

control. This random variable is denoted by ~a. With this interpretation, it is important

to emphasize that the as terms are pure uncertainty e¤ects that emerge from Nature�s role

in the stochastic production process. They do not derive from measurement errors or the

econometrician�s lack of knowledge about functional form. At time 0 the producer chooses

xs for all values of s 2 
, and then faces the uncertainty of not knowing the realization of ~a

and, through (1), the realization of ~z that Nature will choose.

Associated with (1) is the state-speci�c input requirement function

xs = asz
b
s: (2)

Although zs and as are realizations of random variables, it is important to observe that,

because of the timing of production, xs is chosen nonstochastically. Thus, the proper inter-

pretation of (2 ) is that aszbs is the amount of the input that must be committed in period 0

if output zs is to occur when Nature chooses s from 
: To ensure that z1 is produced when

Nature picks f1g from 
 and that z2 is produced when Nature picks f2g, the producer must

therefore commit an input in period 0 totalling at least

a1z
b
1 + a2z

b
2 � g (z1; z2) :

Given a total input level of x; the convex transformation function de�ning technically feasible

production patterns is:

t (z1; z2; x) = g (z1; z2)� x:
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Technically-feasible but ine¢ cient production patterns are given by f(z1; z2) : t (z1; z2; x) < 0g ;

and technically-e¢ cient patterns are f(z1; z2) : t (z1; z2; x) = 0g. Thus, the input distance

function (the reciprocal of the input-oriented radial e¢ ciency measure) for this stochastic

technology is

DI (x; z1; z2) =
x

g(z1; z2)
;

while the output distance function (the reciprocal of the output-oriented measure) is of the

CET form (Powell and Gruen, 1967):

Do (z1; z2; x) = g (z1; z2)
1
b x�

1
b :

Given a positive normalized input price of w > 0; the ex ante minimal cost associated

with producing the random variable ~z is

c (w; z1; z2) = wg (z1; z2) :

Thus, b is interpretable as the cost �exibility (the reciprocal of the elasticity of size) associated

with production of output in state s: It is equal across all states of Nature. Furthermore,

wbas is the marginal cost of ex post output in state s in the neighborhood of the degenerate

production plan zs = 1 for all s: The parametric restriction b � 1 implies the technology

always exhibits nonincreasing returns to scale:

This technology has several convenient properties. The marginal rate of transformation

between ex post outputs is (for �xed x)

MRT = �
�
a1
a2

��
z1
z2

�b�1
:

Thus, the elasticity of transformation between any pair of ex post outputs is a constant:

� =

���� d ln (z1=z2)d ln jMRT j

���� = 1

1� b:

Two limiting special cases are of interest. First, as b ! 1, the transformation function

t (z1; z2; x) converges to a linear, constant-returns-to-scale (CRS) transformation function

that exhibits an in�nite elasticity of transformation, meaning ex post output is perfectly

substitutable between states. Second, as b ! 1, the elasticity of transformation converges

to zero, meaning no ex post output substitutability is possible. In this second case, the

5



technology has a particularly familiar interpretation: To see this, renormalize as � e�bs for

all s 2 
: Then application of a limiting argument originally due to Hardy, Littlewood, and

Polya (1934) shows that as b!1;

g (z1; z2)
1
b !Max

�
z1
e1
;
z2
e2

�
:

This is the ex ante input requirement function for a stochastic production function of the

form (Chambers and Quiggin, 1998)

zs = xes; s 2 
;

where x is not allocable across states, and es can now be interpreted as a realization of a

multiplicative error term. Thus, by a suitable parametric restriction, the technology can be

made to be isomorphic (have the same transformation and isocost curves) to the stochastic

production function with multiplicative errors, which has been a cornerstone of SFA e¢ ciency

measurement.

For illustrative purposes, the transformation curves f(z1; z2) : t (z1; z2; x) = 0g correspond-

ing to a = (a1; a2) = (1:5; 5) ; x = 1; and b = 1:1; 2 and 11 are depicted in Figure 1. These

settings for b correspond to high, moderate and low degrees of substitutability between ex

post outputs.

3 E¢ cient Firm Behavior

There are as many ways to characterize e¢ cient �rm behavior as there are objective functions

for �rms. We seek an objective function that ensures that �rms operate at technically e¢ cient

points �those satisfying DI (x; z1; z2) = Do (z1; z2; x) = 1: Given the smooth technology that

we postulate, this is guaranteed if �rms have preferences that are strictly increasing in

both period 0 consumption (which is nonstochastic) and period 1 consumption (which is

stochastic). Therefore, for concreteness and for easy comparison with existing studies, we

assume that, subject to the constraint imposed by the technology, the �rm seeks to maximize

W (y)
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where y = (y1; y2) and ys = zs � wx is the ex post net return in state of Nature s. The

function W , which gives the producer�s joint evaluation of ex post net returns, is strictly

increasing in y and is suitably smooth to allow di¤erential changes in its arguments. This

form is quite general, and includes, as a very restrictive special case, the expected utility of

net returns (pro�t) class of objective functions.

The �rst-order conditions for e¢ cient �rm behavior can be written in the form

Ws (y)P
m2
Wm (y)

� bwaszb�1s � 0; s 2 
 (3)

where Ws (y) � @W (y) =@ys > 0: This form is particularly convenient analytically because

the monotonicity of W ensures that

�s (y) �
Ws (y)P

m2
Wm (y)
2 (0; 1) ; s 2 
; (4)

and
P

s2
 �s (y) = 1: Hence, �s (y) can be viewed as a probability. In fact, the probabilities

de�ned by (4) are what are referred to in the �nance literature as risk-neutral probabilities

�the subjective probabilities a risk-neutral �rm would need to have if it were to select the

same production plan as a rational �rm with preferences W (y). The importance of this

result is that any e¢ cient choice for a rational �rm with an objective function de�ned over

net-returns can be viewed as though it were generated by a risk-neutral �rm with subjective

probabilities given by the risk-neutral probabilities. Thus, we can investigate the behaviour

of �rms having any net returns preferences by studying the behaviour of risk-neutral �rms

with di¤erent probabilities.

Summing equation (3) across states implies that any rational (z1; z2) for a net-returns

objective function must satisfy:3

1� bw
"X
s2


asz
b�1
s

#
� 0:

The set

� (w) =

(
(z1; z2) : 1� bw

"X
s2


asz
b�1
s

#
� 0

)
3As Chambers and Quiggin (2004) point out, this condition holds for any individual who strictly prefers

more 0 period consumption to less, more period 1 consumption to less, and faces a �nancial market in which

there exists a riskless asset. Therefore, as a practical matter it is much more general than the net-returns

formulation might suggest.
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is what Chambers and Quiggin (2000) have referred to as the e¢ cient set. It contains all

ex post outputs that could be rationally chosen by individuals facing this technology and

having net-returns preferences. Its boundary,

�� (w) =

(
(z1; z2) : 1� bw

"X
s2


asz
b�1
s

#
= 0

)
;

is what Chambers and Quiggin (2000) have referred to as the e¢ cient frontier. It represents

all interior solutions to the �rst-order conditions above. Observe that no assumptions were

made on attitudes towards risk in deriving the e¢ cient set and the e¢ cient frontier.

If b > 1 and �s (y) _ as, an interior solution to the �rst-order conditions (3) must be an
equal-output production plan (i.e., a point lying on the ray bisecting <2+). As b!1; this

riskless plan converges to (z1; z2) = (1; 1), and as b! 1 it converges to (z1; z2) = (e�1; e�1).

In the special case where b = 1 (linear costs), it is evident that � (w) = <2+ if and only if

1�w
P

s2
 as � 0: The ex ante marginal cost of raising ~z nonstochastically in the direction of

the equal-output ray (that is, increasing zs by the same amount in both states) is w
P

s2
 as;

while the marginal return is 1. Thus, � (w) = <2+ provided the marginal net return from

raising ~z in the direction of the equal-output ray is nonpositive. If 1� w
P

s2
 as = 0 then

any ex post output pair can be rationalized by choosing

�s (y) = was =
asP

m2
 am
_ as:

If 1� w
P

s2
 as < 0 then any individual will obtain a marginal net pro�t by lowering ~z in

the direction of the equal-output ray, so that zs = 0 for some s. If 1 � was = 0 then any

point on the zs axis can be rationalized by choosing �s (y) = 1: If 1�was < 0 for all s 2 


then � (w) = ?:

Because �s (y) is de�ned by the preference functional, the point at which a rational

individual locates on the e¢ cient frontier is determined by a number of factors including his

or her subjective beliefs about 
 (as re�ected in his or her subjective probabilities), 4 his or

her attitudes towards risk, as well as the con�uence of these two factors. We illustrate by

considering two special cases.

4This presumes, of course, that individuals formulate unique probability measures. It is well recognized

that otherwise rational individuals can behave as though they are not probabilistically sophisticated.
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First, consider a risk-neutral �rm with subjective probabilities given by (�1; �2) : Then

Ws (y) = �s and an interior equilibrium occurs at

zs =

�
�s
bwas

� 1
b�1

(5)

for s = 1; 2: This solution is trivially on the e¢ cient frontier. However, depending upon the

individual�s beliefs and the parameters of the production technology; a rational individual

may choose z1 less than, equal to, or greater than z2. The riskless output combination

z1 = z2 =

�
1

bw(a1 + a2)

� 1
b�1

(6)

is rational when �s _ as. If �1=�2 > a1=a2 then a rational individual will choose z1 > z2

and commit x � (a1)
1

1�b (bw)
b

1�b to the production process. Conversely, if �1=�2 < a1=a2

then he or she will choose a production plan with z1 < z2 and x � (a2)
1

1�b (bw)
b

1�b . As we

illustrate in Section 3 below, it is trivial to extend the risk-neutral example to the expected

utility of net returns case.

Second, consider a �rm with CES preferences:

W (y) = (�yr1 + (1� �) yr2)
1
r :

These preferences are additively separable across 
; but they are not expected utility pref-

erences. Direct calculation establishes that

�s (y) =
�yr�1s

�yr�11 + (1� �) yr�12

for s = 1; 2: Moreover, by results due to Hardy, Littlewood, and Polya (1934)

lim
r!�1

W (y) = min fy1; y2g

= min fz1 � wx; z2 � wxg

= min fz1; z2g � wx

If a1 > 0 and a2 > 0; then it follows almost trivially that in this limiting case (Chambers

and Quiggin, 2000), a rational individual chooses the riskless production plan given by (6).

The corresponding risk-neutral probabilities are

�s (y) = bwas

�
1

bw [a1 + a2]

� 1
b�1

for s = 1; 2:
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4 Numerical Example

Consider a risk-neutral producer with subjective probabilities given by (�1; �2) : It is clear

from the equilibrium condition (5) that, except in the limiting case where b = 1; zs is

nondecreasing in �s. Thus, a rational producer who attaches a higher probability to the

occurence of state s will allocate more input to production in that state. At one extreme,

when �1 = 0; the equilibrium point on the e¢ cient frontier is given by z1 = 0 and z2 =

(bwa2)
1=(1�b). At the other extreme, when �1 = 1; the rational producer will choose z1 =

(bwa1)
1=(1�b) and z2 = 0: The slope of the e¢ cient frontier that connects these extreme

points is given by
dz2
dz1

= �a1z
b�2
1

a2z
b�2
2

� 0:

To make these ideas more concrete, consider a stochastic technology with a = (1:5; 5) and

b = 2. These parameter settings were used to construct the dashed transformation curve

in Figure 1. The �rst four columns in Table 1 report the production choices of e¢ cient

producers facing a normalized input price of w = 0:5 and having subjective probabilities

that range over the unit interval. The �rst row reveals that when (�1; �2) = (0; 1) the

rational producer chooses (z1; z2) = (0; 2); the last row reveals that when (�1; �2) = (1; 0)

the optimizing choice is (z1; z2) = (0:667; 0). The e¢ cient frontier connecting these two

points is a straight line with slope dz2=dz1 = �a1=a2 = �3: Thus, the shape of the e¢ cient

frontier di¤ers from the shape of the transformation function depicted in Figure 1, the latter

being a strictly concave function depicting the trade-o¤ between ex post outputs when the

input level is �xed at x = 1.

For this particular cost structure, a rational (risk-averse or risk-neutral) producer will

choose the riskless production plan (z1; z2) = (0:5; 0:5) when his or her risk-neutral prob-

abilities satisfy the condition �1=�2 = a1=a2 = 3 (that is, when �1 = a1
a1+a2

= 0:75 and

�2 =
a2

a1+a2
= 0:25). At this point, (0:5; 0:5); and for these speci�c probabilities, (:75; :25),

the technology is, in the terminology of Chambers and Quiggin (2000), not inherently risky.

That is, any stochastic output with expected value �1z1 + �2z2 = 0:5 is more costly to pro-

duce than the non-stochastic output (0:5; 0:5); and similarly for any other expected output

level. A technology is inherently risky in the sense of Chambers and Quiggin (2000) when

10



the cost-minimising (z1; z2) for a given expected output is truly stochastic, so that z1 6= z2.

When this happens, there is always a trade-o¤between cost-minimisation and risk-reduction.

However, when the technology is not inherently risky, the least risky (for the given probabili-

ties) stochastic output is also the least costly.5 It is important to recognize that the concepts

of inherently risky and not inherently risky depend critically upon the producer�s subjective

probabilities. At the point where (z1; z2) = (0:5; 0:5); this technology is inherently risky for

any probability distribution other than (�1; �2) = (:75; :25):

Observe that the non-stochastic production plan requires less input than any other pro-

duction plan on the e¢ cient frontier. This will be true for any technology of the general

form (2). However, for arbitrary stochastic technologies, it is not generally true that a non-

stochastic production plan is always the least costly on the e¢ cient frontier. To see why it

is true in this case, it su¢ ces to minimise a1zb1 + a2z
b
2 while restricting our choices to be on

the e¢ cient frontier, that is, subject to the constraint (derived above) that

a1
�
bzb�11

�
+ a2

�
bzb�12

�
= 1:

It is easily veri�ed that minimising a1zb1 + a2z
b
2 subject to this constraint yields z1 = z2:

Finally, the results in Table 1 bear out our earlier observation that if �1=�2 > a1=a2 = 3

then a rational individual will choose z1 > z2 and x � (a1)
1

1�b (bw)
b

1�b = 0:667; if �1=�2 < 3

then a rational individual will choose z2 > z1 and x � 2:

The input-output combinations reported in Table 1 are those chosen by rational risk-

neutral producers having a range of information sets (subjective probabilities). However,

they are also combinations that may be chosen by risk-averse producers having somewhat

di¤erent information sets. To see this, consider a producer who attaches probability p1 to

state of Nature f1g, and who maximizes the expected utility of net returns. If the utility

function is exponential then the welfare function is

W (y) = �p1 exp(�Ay1)� (1� p1) exp(�Ay2)

where A denotes the coe¢ cient of absolute risk aversion. The corresponding risk-neutral

5This condition may also be described by saying that the cost function is generalized Schur-concave with

respect to the probability vector (0:75; 0:25) :
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probability for state of Nature f1g is

�1 =
p1 exp(�Azs)

p1 exp(�Az1) + (1� p1) exp(�Az2)
: (7)

For any values of (�1; z1; z2) and A there exists a value of p1 that solves equation (7). For

example, if (�1; z1; z2) = (0:5; 0:333; 1) and A = 1; the solution is p1 = 0:3392: This means

that any rational producer who i) maximizes the expected utility of net returns, ii) has

an exponential utility function with coe¢ cient of absolute risk aversion A = 1, and iii)

attaches probability 0:3392 to state of Nature f1g, will make exactly the same production

choice as a risk-neutral producer who regards both states of Nature as equally likely. Other

solutions for p1 corresponding to A = 1 and di¤erent values of (�1; z1; z2) are reported in

the second last column in Table 1. Solutions corresponding to A = 10 are reported in the

last column. For this technology, where the mean expected output is approximately 0.5,

these values of A imply coe¢ cients of relative risk aversion ranging from approximately 0.5

(slightly risk-averse) to 5 (moderately risk-averse).6

Repeating this numerical exercise using b = 11 (and leaving the normalized input price

and all other parameter settings unchanged) yields the optimal production choices reported

in Table 2. This value of b was previously used to construct the near-square transformation

function in Figure 1. The e¢ cient frontier now connects the points (z1; z2) = (0; 0:904)

and (z1; z2) = (0:801; 0); and has slope dz2=dz1 = �3(z1=z2)9: Observe that the output

pairs reported in Table 2 expose producers to no greater risk than the corresponding pairs

reported in Table 1, and that all but the �rst and last production plans are relatively riskless.

The two risky production plans are only chosen by rational risk-neutral producers when

they attach a subjective probability of more than 0:95 to one or other state. Moderately

risk-averse producers (those with exponential utility and A = 10 ) only choose these risky

plans when they regard one or other state as a near-certainty (subjective probability greater

than approximately 0:99). The results reported in Table 2 are consistent with our earlier

observation that if �s (y) _ as then as b!1 the riskless production plan converges to (z1;

z2) = (1; 1): More generally, if �s(y) 6= 0 for all s 2 
, then as b!1 the riskless production

6We take 10 to be the highest plausible level of relative risk aversion. However, some researchers view

levels of relative risk aversion as plausible if they lie in the range 1 to 4. These researchers would characterize

5 as extremely risk averse.
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plans of all rational individuals converge to (z1; z2) = (1; 1), irrespective of the distribution

of the random variable ~a (i.e., irrespective of the elements of the vector a).

Finally, when b = 1:1 (the value of b underpinning the almost linear transformation

function depicted in Figure 1), the optimal production choices are those reported in Table 3.

These production plans are at least as risky as the corresponding plans reported in Tables 1

and 2. The riskless production plan is consistent with our earlier observation that as b! 1

riskless output converges to z1 = z2 = e�1 = 0:3678.

5 Properties of DEA and SFA Estimators

As we have just illustrated, rational �rms with access to the same stochastic technology may

make di¤erent ex ante production choices due to di¤erences in beliefs and/or preferences.

Firms allocate more input to states of Nature they believe to be more probable, and more

risk-averse �rms produce closer to the equal-output ray. Firms with identical production

plans may also realize di¤erent outputs due to the role Nature plays in selecting di¤erent

states. Unfortunately, conventional parametric and nonparametric e¢ ciency measurement

methods fail to recognize this multiplicity of sources of variation in inputs and outputs.

Thus, unless all �rms select riskless production plans, conventional estimators7 of e¢ ciency

will be biased. In this section, we use simulation methods to investigate the nature of this

bias.

To conserve space, and to facilitate interpretation of our �ndings, all our empirical work

was underpinned by a �xed set of risk-neutral probabilities. Rather than choose values for

�1 that are equally spaced across the unit interval, such as those used to construct Tables

1 to 3, we used 23 values randomly drawn from a standard triangular distribution. We

also included two values of special interest, namely the mode of the triangular distribution

(�1 = 0:5) and the value that would cause rational �rms to adopt riskless production plans

(for the stochastic technologies we consider, �1 = 0:75). Associated with each value is a

7Strictly speaking, the term �predictor� should be used if inferences are being drawn using a random

e¤ects stochastic frontier model. In that case, the object of inference (�rm e¢ ciency) is a random variable,

not a parameter. However, for simplicity, we use the term �estimator�in both contexts.
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nonstochastic input-output combination that will potentially be chosen by a rational e¢ cient

�rm.

The 25 selected probabilities are reported in ascending order in the second column of

Table 4, and the associated production choices of �rms facing a technology with w = 0:5; a =

(1:5; 0:5) and b = 2 are reported in columns 3 to 5. Recall that these parameter settings,

which permit a moderate degree of substitutability between ex post outputs, were also used

to prepare Table 1. The role of Nature is to choose realizations of the random variable ~a,

and thereby assign �rms to potentially di¤erent states. We perform this role by randomly

assigning each �rm to state f1g with probability 0:5. Column 6 of Table 4 reports one

sample of realized states, and column 7 lists the associated realized outputs.

The last two columns in Table 4 report e¢ ciency scores obtained using variable returns

to scale (VRS) DEA and SFA estimators (and the inputs and realized outputs reported in

columns 3 and 7). The DEA speci�cation was an input-oriented model. The SFA speci�ca-

tion was a half-normal random e¤ects frontier with a Cobb-Douglas functional form. The

DEA methodology implicitly imposes a monotonicity constraint on the estimated production

frontier. To ensure the estimated SFA frontier also satis�es this property, we restricted the

slope coe¢ cient in the Cobb-Douglas function to be nonnegative.8

It is useful to interpret the results reported in Table 4 with the aid of Figure 2. Panel

(a) in this �gure plots the observed data points and the loci of all rational and e¢ cient

input-output combinations that are possible using the technology. Panel (b) plots the data

points and the estimated DEA and SFA frontiers.

The DEA results reported in Table 4 are unsurprising in several respects. First, as noted

above, the riskless production plan z1 = z2 = 0:5 requires an input commitment of x = 0:5,

which is less than the input requirement of any other production plan. Again, this is a

property of the particular technology that we have used to generate our numerical results.

DEA methodology guarantees that the �rm in the sample that uses the least amount of

input will be placed on the estimated VRS frontier, irrespective of its output level or the

outputs of other �rms. Thus, the estimated e¢ ciency of a rational �rm choosing the riskless

production plan is guaranteed to be 1 (Firm 21 in this sample). Second, because there is one

8All results were generated using the SHAZAM software.
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�rm in the sample that chooses the riskless production plan (and also because of our choice

of technology �there exist well-behaved stochastic technologies for which the following is

not true), any rational e¢ cient �rm that chooses a risky production plan and experiences

an unfavourable state of Nature has an input-oriented DEA e¢ ciency score of 0:5x�1 < 1.

Pictorially, �rms experiencing unfavourable states of Nature will be those located below the

horizontal line passing through the point of riskless production (z1 = z2 = 0:5). The input-

oriented DEA e¢ ciency scores for these �rms are ratio measures of the distances between

the data points and the vertical segment of the DEA frontier at x = 0:5. Finally, observe

from Figure 2 and Table 1 that z2 > z1 for any �rm in the sample that uses x � 0:667.

Thus, �rms operating on this scale (all �rms with �1 � 0:5) will be found to be fully e¢ cient

(using the input-oriented DEA estimator) if and only if they experience state of Nature f2g:

When properly understood, the SFA results are equally unsurprising. For a start, the

estimated SFA frontier in Figure 2 is horizontal at zs = 1:5283 because, for this sample,

the correlation between observed inputs and outputs is plausibly negative. Hence, the

monotonicity constraint is binding and the maximum likelihood estimate of the output elas-

ticity is exactly zero.9 Second, the SFA e¢ ciency estimates are uniformly lower than the

DEA estimates. This is largely because the input-oriented DEA e¢ ciency scores have a

theoretical lower bound of 0:25, while the output-oriented SFA e¢ ciency scores have a the-

oretical lower bound of zero. Third, with a horizontal SFA frontier, rational �rms will be

found to be relatively e¢ cient if and only if they have �2 � 1 and experience state of Nature

f2g. Few of these �rms will be found to be precisely 100% e¢ cient owing to the way the

SFA methodology makes adjustments for statistical noise. There is no measurement error in

this data set, so the only source of statistical noise is misspeci�cation of the stochastic tech-

nology (i.e., using a single-valued function to approximate the deterministic input-output

loci depicted in Figure 2). Finally, unlike the DEA estimator, the SFA estimator does

not guarantee that the �rm choosing the riskless production plan will be found to be fully,

or even highly, e¢ cient. In this sample, Firm 21 is estimated to be only 34% e¢ cient

9Sampling theory estimators have the undesirable property that binding inequality constraints lead to

estimates that lie on the constraint boundary, with estimated standard errors of zero. The problem can be

overcome using Bayesian methodology (Coelli et al. 2006).
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(� 0:5=1:5283). The estimated e¢ ciency of this �rm is governed by the position of the SFA

frontier. In turn, this is largely determined by the output of the �rm that has �2 closest to

1 and experiences state of Nature f2g. In this sample, this lucky risk-taking �rm is Firm

1.

We conducted a simulation experiment that involved replicating this exercise N = 500

times. The production choices reported in columns 3 to 5 of Table 4 were held �xed across

replications. Thus, the only stochastics in our experiment are those associated with the role

of Nature �in each replication we again assigned each �rm to state f1g with probability 0:5.

Table 5 reports descriptive statistics on the e¢ ciency scores obtained from this experiment.

These statistics can be viewed as estimates of the means, standard deviations, maxima and

minima of the sampling distributions of the DEA and SFA estimators. For example, the �rst

row of Table 5 reveals that the SFA estimator of the e¢ ciency of Firm 1 has an estimated

sampling distribution that is centred at 0:489 with a standard deviation of 0:418. It is

important to remember that there is no technical ine¢ ciency or measurement error in any

of the 500 simulated data sets. Thus, any mean values that are less than 1 indicate that

the conventional DEA and SFA estimators are biased.

Predictably, the results reported in Table 5 reveal that the DEA and SFA estimators are

both seriously biased, although the bias is much smaller when DEA is used to estimate the

e¢ ciencies of �rms adopting riskless or near-riskless production plans (�1 � 0:75). However,

the performance of the DEA estimator in these cases is an artifact of the estimation method-

ology. As we observed earlier, the DEA linear program will ensure that, in every replication

of the experiment, the �rm that adopts the riskless production plan will be placed on the

e¢ cient frontier, irrespective of its output level. Firms that adopt near-riskless produc-

tion plans will be estimated to be hightly e¢ cient (using the input-oriented DEA estimator)

because they use an input level close to x = 0:5.

The results reported in Table 5 give a very incomplete, if not misleading, picture of

estimator performance. More informative summary measures of performance are presented

in Figure 4, where we depict the estimated sampling distributions of our estimators for

the cases �1 2 f:061; :5; :75; :943g. These histograms are representative of all estimated

sampling distributions obtained in our experiment, and re�ect the systematic estimation
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errors identi�ed in our earlier discussion of Table 4 and Figure 2. In the case of the

DEA estimator, the fact that states have been assigned with equal probability means that,

irrespective of input or realized output levels, the estimator takes the value 0:5x�1 with

probability no less than 0:5. Indeed, for any �rm with �1 � 0:5 (i.e., any �rm using

x � 0:667), the DEA estimator takes the values 0:5x�1 and 1 with equal probability. For

any �rm with �1 > 0:75, the DEA estimator takes discrete values in the interval [0:5x�1; 1]

with probabilities no greater than 0:5. For example, Firm 25, with subjective probability

�1 = 0:943, is placed on the DEA frontier if and only if it experiences state f1g and Firms

2 to 19 also experience state f1g. The probability of this joint event is so small that it did

not occur once in 500 replications of our experiment.

Matters are slightly less clear cut in the case of the SFA estimator, owing to the con-

cessions made for statistical noise. However, for any �rm operating on a relatively large

scale (e.g., x � 1), the SFA estimator takes a relatively high value with probability 0:5 and

a relatively low value with the same probability (see the estimated sampling distribution for

Firm 1). For any �rm operating on a relatively small scale (at or near the point of riskless

production), the SFA estimator can take any value greater than about 0:3 (see the histogram

for Firm 21). This lower bound is the approximate e¢ ciency score in the worst-case scenario

where the estimated SFA frontier is horizontal (i.e., the monotonicity constraint is binding)

and some �rms with high �2 experience state f2g (thus causing the estimated frontier to be

at or near the level of the maximum output that is feasible using the technology).

It is evident that the DEA and SFA estimators are seriously and systematically biased.

The sampling distributions of the estimators have upper bounds of 1 (the true value), but

they have lower bounds that are inversely related to the riskiness of �rm production plans

(equivalently, scale of operations). This �nding is robust to changes in the parameter

settings, as evidenced by Figures 3, 5 and 6.

Panel (a) in Figure 3 depicts rational production plans for the case where the stochastic

technology exhibits a high degree of substitution between ex post outputs (b = 1:1). The

plans depicted in this panel are, in fact, only the subset of plans that would be optimally

selected by �rms with risk-neutral probabilities in the range �1 � 0:6 (the remaining plans

extend the two loci in the directions indicated). Panel (b) in Figure 3 traces out the set of
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rational production plans when the degree of subsitution between outputs is low (b = 11).

Observe from Table 3 that most �rms facing this technology adopt riskless or near-riskless

production plans.

We repeated our simulation experiment using these two alternative stochastic technolo-

gies, and the estimated sampling distributions of the DEA and SFA estimators are depicted

in Figures 5 and 6. These sampling distributions exhibit all the features identi�ed above.

Observe that estimator performance deteriorates (improves) when the parameter settings

used in our simulation experiment are adjusted so that e¢ cient �rms optimally choose more

(less) risky production plans.

Finally, to demonstrate that the unreliability of the DEA and SFA estimators derives

from misspeci�cation of the stochastic technology, and not from the linear programming or

maximum likelihood estimation methodologies, we used the data reported in columns 3 to

5 of Table 4 (i.e., data on both realized and unrealized ex post outputs) to estimate the

stochastic technology within a traditional multiple-output framework, where we now treat

(z1; z2) as two separate outputs. The SFA model was a stochastic output distance function

(e.g., Coelli and Perelman, 1999). The two estimators placed all �rms almost exactly on

the VRS frontier (all estimated technical e¢ ciency scores were equal to 1 when rounded to 3

decimal places). Unfortunately, this multiple-output estimation approach is unavailable in

any practical setting because it requires data on the complete ex ante output choice, not just

data on the ex post realization of the random variable ~z. An estimation approach that o¤ers

some promise of being able to identify �exible stochastic technologies is the �nite mixtures

approach of O�Donnell and Gri¢ ths (2006).

6 Concluding comments

Conventional e¢ ciency analysis, and most of modern production economics, is concerned

with estimating nonstochastic behaviour and nonstochastic technologies. Stochastic elements

of the decision environment are typically only recognized when and if it is econometrically

convenient. This practice places strong and as yet untested a priori restrictions on stochastic

technologies. This paper shows that if the restrictions are invalid then the application of
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standard methods of e¢ ciency analysis to data arising from production under uncertainty

may give rise to spurious �ndings of e¢ ciency di¤erences between �rms.

In considering our results, one should remember that we have intentionally considered

a case where all �rms face exactly the same decision environment. They face a common

stochastic technology and the same input and output markets. They only di¤er in their

subjective beliefs about that decision environment, and those di¤erences in beliefs lead them

to prepare rationally for that stochastic world in di¤erent ways. The empirical outcome

is seriously biased e¢ ciency scores as estimated by either standard input-oriented DEA or

output-oriented SFA methods. And although we have not considered output-oriented DEA

or input-oriented SFA e¢ ciency measures in this paper, it is apparent, however, that seriously

biased results can also occur for them. Moreover, this remains true even if all �rms have

exactly the same belief structure. Suppose, for example, that all �rms faced the technology

with moderate output substitutability and had a subjective probability of �1 = :05: If they

were all risk neutral, they would all rationally choose the same input level (1.807) and

produce (z1; z2) = (:033; 1:9) : If Nature then chooses realizations of ~a by assigning outcomes

to state {1} with a probability .5, then roughly half the �rms in any representative sample

would be judged as ine¢ cient using output-oriented DEA methods, even though all �rms

operate e¢ ciently.

When it is realized that real-world data typically re�ect multiple sources of behavioural

di¤erences across �rms, then it is apparent that, in attempts to estimate or approximate a

supposed common frontier technology, serious problems likely can emerge from the practice

of ignoring the interplay of these other sources with the truly stochastic nature of many

production technologies. Therefore, an important implication of our results is that it is

necessary to reconsider the �ndings of virtually all previous empirical studies of e¢ ciency

to determine whether the results may have been a¤ected by a failure to take appropriate

account of uncertainty. In some cases, it may be necessary to qualify policy recommendations

derived from �ndings of widespread ine¢ ciency. More importantly, perhaps, it is necessary

to develop robust techniques that will make it possible to disentangle di¤erences in technical

e¢ ciency from di¤erences caused by the stochastic nature of production.

The major �nding of the current study is that the incorporation of an appropriate rep-
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resentation of uncertainty is a matter of major urgency if empirical e¢ ciency analysis is to

remain relevant to a fundamentally uncertain economic world. Results derived from a non-

stochastic approximation to that stochastic world clearly cannot be regarded as reliable.
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(b) DEA: Firm 14 (π1 = 0.5)

(c) DEA: Firm 21 (π1 = 0.75)

(d) DEA: Firm 25 (π1 = .943)
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Figure 6: Estimated Sampling Distributions: Low Output Substitutability
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Table 1: Production Choices: Moderate Output Substitutability

�1 z1 z2 x A = 1 A = 10

0.00 0.000 2.000 2.000 0.0000 0.0000

0.05 0.033 1.900 1.807 0.0081 0.0000

0.10 0.067 1.800 1.627 0.0193 0.0000

0.15 0.100 1.700 1.460 0.0344 0.0000

0.20 0.133 1.600 1.307 0.0545 0.0000

0.25 0.167 1.500 1.167 0.0808 0.0000

0.30 0.200 1.400 1.040 0.1143 0.0000

0.35 0.233 1.300 0.927 0.1563 0.0000

0.40 0.267 1.200 0.827 0.2077 0.0001

0.45 0.300 1.100 0.740 0.2688 0.0003

0.50 0.333 1.000 0.667 0.3392 0.0013

0.55 0.367 0.900 0.607 0.4176 0.0059

0.60 0.400 0.800 0.560 0.5014 0.0267

0.65 0.433 0.700 0.527 0.5872 0.1143

0.70 0.467 0.600 0.507 0.6713 0.3808

0.75 0.500 0.500 0.500 0.7500 0.7500

0.80 0.533 0.400 0.507 0.8205 0.9382

0.85 0.567 0.300 0.527 0.8809 0.9879

0.90 0.600 0.200 0.560 0.9307 0.9980

0.95 0.633 0.100 0.607 0.9700 0.9997

1.00 0.667 0.000 0.667 1.0000 1.0000
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Table 2: Production Choices: Near-Zero Output Substitutability

�1 z1 z2 x A = 1 A = 10

0.00 0.000 0.904 0.164 0.0000 0.0000

0.05 0.600 0.899 0.161 0.0376 0.0026

0.10 0.643 0.894 0.158 0.0796 0.0089

0.15 0.670 0.889 0.156 0.1241 0.0193

0.20 0.689 0.884 0.154 0.1707 0.0345

0.25 0.705 0.878 0.152 0.2189 0.0557

0.30 0.718 0.872 0.150 0.2686 0.0840

0.35 0.729 0.866 0.149 0.3196 0.1208

0.40 0.739 0.859 0.147 0.3716 0.1673

0.45 0.748 0.851 0.146 0.4245 0.2248

0.50 0.756 0.843 0.145 0.4781 0.2937

0.55 0.763 0.834 0.145 0.5322 0.3738

0.60 0.769 0.825 0.144 0.5867 0.4634

0.65 0.776 0.814 0.143 0.6413 0.5592

0.70 0.781 0.801 0.143 0.6958 0.6567

0.75 0.787 0.787 0.143 0.7500 0.7500

0.80 0.792 0.769 0.143 0.8036 0.8335

0.85 0.797 0.748 0.144 0.8562 0.9025

0.90 0.801 0.718 0.144 0.9073 0.9539

0.95 0.806 0.670 0.145 0.9561 0.9866

1.00 0.810 0.000 0.147 1.0000 1.0000
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Table 3: Production Choices: High Output Substitutability

�1 z1 z2 x A = 1 A = 10

0.00 0.000 40E+4 73E+4 0.0000 0.0000

0.05 0.000 24E+4 42E+4 0.0000 0.0000

0.10 0.000 14E+4 23E+4 0.0000 0.0000

0.15 0.000 79590 12E+4 0.0000 0.0000

0.20 0.000 43408 63139 0.0000 0.0000

0.25 0.000 22766 31044 0.0000 0.0000

0.30 0.000 11420 14534 0.0000 0.0000

0.35 0.000 5543 6432 0.0000 0.0000

0.40 0.001 2444 2666 0.0000 0.0000

0.45 0.002 1024 1024 0.0000 0.0000

0.50 0.007 394.8 358.9 0.0000 0.0000

0.55 0.017 137.7 112.6 0.0000 0.0000

0.60 0.041 42.39 30.88 0.0000 0.0000

0.65 0.092 11.15 7.206 0.0000 0.0000

0.70 0.193 2.387 1.548 0.2064 0.0000

0.75 0.386 0.386 0.701 0.7500 0.7500

0.80 0.735 0.041 1.084 0.8889 0.9998

0.85 1.348 0.002 2.084 0.9561 1.0000

0.90 2.387 0.000 3.906 0.9899 1.0000

0.95 4.099 0.000 7.080 0.9991 1.0000

1.00 6.846 0.000 12.49 1.0000 1.0000

30



Table 4: Inputs, Outputs, States of Nature, and E¢ ciency Estimates

Firm �1 x z1 z2 s zs DEA SFA

1 0.061 1.767 0.041 1.878 2 1.878 1.000 0.901

2 0.125 1.541 0.083 1.750 1 0.083 0.324 0.060

3 0.240 1.194 0.160 1.520 1 0.160 0.419 0.112

4 0.270 1.115 0.180 1.461 1 0.180 0.448 0.126

5 0.318 0.999 0.212 1.365 2 1.365 1.000 0.819

6 0.341 0.947 0.227 1.319 2 1.319 1.000 0.805

7 0.367 0.891 0.245 1.265 1 0.245 0.561 0.170

8 0.384 0.856 0.256 1.231 2 1.231 1.000 0.775

9 0.387 0.851 0.258 1.225 1 0.258 0.588 0.180

10 0.418 0.793 0.279 1.163 1 0.279 0.630 0.194

11 0.441 0.755 0.294 1.118 2 1.118 1.000 0.727

12 0.475 0.701 0.317 1.049 2 1.049 1.000 0.693

13 0.489 0.682 0.326 1.022 1 0.326 0.733 0.225

14 0.500 0.667 0.333 1.000 2 1.000 1.000 0.666

15 0.501 0.665 0.334 0.997 2 0.997 1.000 0.664

16 0.508 0.656 0.339 0.983 2 0.983 1.000 0.656

17 0.573 0.584 0.382 0.854 1 0.382 0.857 0.263

18 0.574 0.583 0.382 0.853 1 0.382 0.858 0.264

19 0.668 0.518 0.446 0.663 2 0.663 1.000 0.452

20 0.673 0.516 0.449 0.654 2 0.654 1.000 0.445

21 0.750 0.500 0.500 0.500 2 0.500 1.000 0.343

22 0.755 0.500 0.504 0.489 1 0.504 1.000 0.354

23 0.790 0.504 0.527 0.420 1 0.527 0.997 0.360

24 0.902 0.561 0.601 0.197 1 0.601 0.909 0.410

25 0.943 0.599 0.629 0.114 2 0.114 0.834 0.081

Mean 0.498 0.797 0.332 1.004 1.520 0.672 0.846 0.429
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Table 5: Characteristics of Sampling Distributions: Moderate Output Substitutability

DEA SFA

Firm �1 Mean St.Dev. Min Max Mean St.Dev. Min Max

1 0.061 0.659 0.358 0.283 1.000 0.487 0.422 0.018 1.000

2 0.125 0.638 0.337 0.324 1.000 0.489 0.418 0.041 1.000

3 0.240 0.705 0.291 0.419 1.000 0.572 0.401 0.095 1.000

4 0.270 0.746 0.275 0.448 1.000 0.606 0.391 0.103 1.000

5 0.318 0.738 0.250 0.501 1.000 0.570 0.380 0.121 1.000

6 0.341 0.763 0.236 0.528 1.000 0.596 0.369 0.130 1.000

7 0.367 0.777 0.219 0.561 1.000 0.595 0.358 0.140 1.000

8 0.384 0.788 0.208 0.584 1.000 0.594 0.349 0.146 1.000

9 0.387 0.794 0.206 0.588 1.000 0.598 0.344 0.148 1.000

10 0.418 0.808 0.185 0.630 1.000 0.585 0.333 0.159 1.000

11 0.441 0.835 0.169 0.662 1.000 0.595 0.317 0.168 1.000

12 0.475 0.853 0.143 0.713 1.000 0.593 0.302 0.181 1.000

13 0.489 0.867 0.134 0.733 1.000 0.598 0.292 0.186 1.000

14 0.500 0.875 0.125 0.750 1.000 0.598 0.295 0.191 1.000

15 0.501 0.884 0.124 0.752 1.000 0.616 0.295 0.191 1.000

16 0.508 0.881 0.119 0.763 1.000 0.603 0.293 0.194 1.000

17 0.573 0.932 0.072 0.857 1.000 0.601 0.256 0.218 1.000

18 0.574 0.932 0.071 0.858 1.000 0.600 0.249 0.219 1.000

19 0.668 0.982 0.017 0.966 1.000 0.564 0.208 0.255 1.000

20 0.673 0.984 0.105 0.969 1.000 0.561 0.211 0.256 1.000

21 0.750 1.000 0.000 1.000 1.000 0.531 0.198 0.286 1.000

22 0.755 1.000 0.000 1.000 1.000 0.527 0.198 0.280 1.000

23 0.790 0.995 0.003 0.992 1.000 0.508 0.203 0.240 1.000

24 0.902 0.902 0.015 0.891 0.952 0.411 0.264 0.112 1.000

25 0.943 0.848 0.018 0.834 0.927 0.365 0.297 0.065 1.000
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