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1 Introduction

The idea that contractual incompleteness is related in some way to ambiguity seems appealing

(Mukerji, 1998). Appropriately enough, however, this idea is itself ambiguous. In ordinary us-

age, the term �ambiguity�refers to the semantic property of propositions or sets of propositions

admitting multiple, mutually inconsistent interpretations. The fact that the terms of contracts

may be interpreted in di¤erent ways by di¤erent parties is well-known and is a disincentive to the

adoption of complex contracts with exotic provisions. This fact is naturally expressed with refer-

ence to the potential ambiguity of contracts. Most discussion of the relevant issues of knowledge,

awareness and so on is undertaken in terms of the semantic interpretation of propositions, and

consistent with this, we will use the term �semantic ambiguity�to refer to ambiguity as a property

of propositions that cannot be expressed in terms of events (measurable subsets of a state space).

On the other hand, in state-contingent approaches to decision theory, the term �ambiguity�

is commonly used in relation to the fruitful body of work beginning with Ellsberg (1961), who

built on earlier contributions by Keynes and Knight. Appropriately enough, there is no generally

agreed de�nition of �ambiguity�in this context. Broadly speaking, however, events are ambiguous

if preferences regarding acts measurable with respect to those events cannot be rationalized by a

subjective probability distribution. It seems plausible to suggest that contracting over ambiguous

events will prove di¢ cult. This suggestion has been formalized with speci�c reference to the

incomplete contracts literature by Mukerji (1998) and with reference to �nancial markets by

Mukerji and Tallon (2001). We will use the term �probabilistic ambiguity�to refer to ambiguity as

a property of events for which there exists no well-de�ned probability. Grant and Quiggin (2006)

show that semantic ambiguity implies probabilistic ambiguity, but not vice versa.

As argued by Maskin and Tirole (1999), responding to the work of Hart and Moore (1988,

1999), constraints arising from inability to describe, or even foresee possible states of nature, will

not, in general, prevent perfectly rational agents from achieving optimal contracts. This insight

seems particularly applicable to notions of semantic ambiguity, which re�ect the incapacity of the

natural languages used by boundedly rational human agents to achieve the unbounded expressive

power of formal languages implicit in most models of contracting.
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The purpose of this paper is to consider the role of semantic and probabilistic ambiguity in the

speci�cation of incomplete contracts. In the process, we will show, using a model of unforeseen

contingencies incorporating bounded rationality (Grant and Quiggin 2006, Heifetz, Meier and

Schipper 2006), that the semantic and probabilistic notions of ambiguity are closely related. That

is, Ellsberg�s choice of terminology was indeed apposite.

Unlike most of the economics literature on incomplete contracts, we shall not consider strategic

misrepresentations or other �opportunistic�behavior of one or more parties to a contract. Rather

disputes, if they arise, will do so from �honest misunderstandings�arising from the inherent am-

biguity of natural language. Furthermore, we shall assume that each individual has complete

information relative to the representation of the world available to them in the absence of con-

tracting. Hence the only source of ambiguity in our model will be from individuals� di¤erent

interpretations of the world.

The paper is organized as follows. We begin with a simple example designed to motivate the

analysis. Next we describe the situation in which contracting takes place, adapting the model of

Grant and Quiggin (2006). The key idea is that the parties have access to di¤erent state-space

representations of the world, even though they share the same natural language and use it to

describe contingencies. The di¤erent models used by the parties may be viewed as alternative

coarsenings of the fully-speci�ed state-space description of the world that would be available to

an unboundedly rational observer.

We then consider risk-sharing contracts which involve a rule specifying a state-contingent

transfer vector. The main interest of the paper is in the speci�cation of the sharing rule in the

case when the state space cannot be described fully and unambiguously. The �external�perspective

of an unboundedly rational observer may be used to characterize the constrained-optimal contract

between the parties, and to derive conditions under which such a contract may be reached, even

though the parties themselves do not have access to the external description. Using this contract

as a benchmark, we consider the roles of ambiguity and risk-aversion in determining the extent of

contracting and risk-sharing.
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2 Motivating example

In informal discussions of ambiguous contracts, it is common to refer to �gray areas�. Some

contracts, or contingencies speci�ed in contracts, are seen as having gray areas, thereby giving

rise to possibilities of disagreement and dispute, while others are seen as relatively clear-cut and

unambiguous.

We develop these ideas in an example, speci�ed as follows.1 Suppose two individuals Row

(Rowena) and Col (Colin) are contemplating entering into a risk-sharing contract. They will draw

a card from a pack. It may be white at both ends (ranging in shades of light gray towards the

middle), black at both ends (ranging in shades of dark gray towards the middle), or white at one

end and black at the other (ranging in shades of light gray in one half to darker shades of gray in

the other half). If both ends are white (black) the card is deemed �white�(�black�). If one end is

white and the other is black, the card ranges in shade from white-to-black or black-to-white.

Each player sees the world as black or white, and resolves shades of gray to whichever is nearer.

However, Row always observes the top half of the card, while Col always observes the bottom

half. Thus, if the card ranges from black at the top to white at the bottom, Row will observe

shades of dark gray, which she will construe as black, while Col will observe shades of light gray,

which he will construe as white. The underlying state space and the two individuals�partitions of

the black-white spectrum are summarized in the following table:

Col�s observation

Card drawn is: white at bottom black at bottom

Row�s observation white at top white, white white,black

black at top black,white black,black

Suppose the state-contingent endowments of the two individuals are given in the following bi-

1 We are indebted to Bob Brito for this suggestion.
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matrix,

Col�s endowment

Card drawn is: white at bottom black at bottom

Row�s endowment white at top
0

1

1

1

black at top
0

0

1

0

The bottom-left-hand entries of each cell of the bi-matrix are constant within a row while the

top-right-hand entries are constant within a column. That is, each individual faces a single source

of uncertainty that is measurable with respect to his own partition of the state space.

We assume that both players are risk-averse and view the two elements of their respective

partitions as �exchangeable�(Chew and Sagi, 2006). Hence both parties would prefer the risk-free

endowment yielding 1=2 in every state. So, ignoring (for the moment) any possibility of future

disagreement and dispute, both would �nd it attractive to sign a risk-sharing contract comprising

the following contingent transfer from Col to Row (expressed in terms of their common natural

language):

t =

8>><>>:
�1=2 if the card drawn is �white�

1=2 if the card drawn is �black�
.

In the formal framework developed below, if such a contract were signed, the presumption is that

each party translates the contingencies on which the transfer function t depends into her or his

own formal language. For Row, this entails interpreting �the card drawn is white�as meaning �top

is white�, while for Col, this entails interpreting �the card drawn is black�as meaning �bottom is

black�.

The card shading from black at the top to white at the bottom creates a possibility for dis-

agreement since Row will observe dark gray shading, interpret this as �black�, and so believe that

she is entitled to receive a payment. Col will in the same situation observe light gray shading,

interpret this as �white�, so he will also expect a payment. Hence, a disagreement will ensue. The

card shading from white at the top to black at the bottom also is inconsistent with the explicit
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contingencies stated in the contract but since in this state both were expecting to make a transfer

to the other, we presume that this can be resolved amicably with the �surplus�shared between the

parties.

Boundedly rational players, in this setup, are unable (in the absence of some increase in e¤ort)

to formulate a state description su¢ ciently re�ned to encompass this possibility, allowing the

contract to specify a resolution. However, they may nonetheless be aware (in a sense made precise

by Grant and Quiggin 2006) that disputes are possible. Depending on the weight they place on this

possibility, they may choose a contract which o¤ers only partial hedging, or even no contract at all.

This corresponds closely to the risk-uncertainty distinction of Knight (1921) whose main concern

was with uncertainties that could not be hedged through market contracts such as insurance, and

therefore reduced to manageable risk. Uncertainty of this kind was central to Knight�s idea of

entrepreneurship.

Some results are intuitively apparent. The parties will bene�t less from a hedging contract the

larger (as observed from an external perspective unavailable to them) is the gray area giving rise

to dispute. They will bene�t more from a hedging contract the more risk-averse they are, that

is, the stronger their preference for the non-stochastic endowment over the original endowment.

Thus risk and ambiguity work in opposite directions. The aim of the present paper is to develop

a formal model within which these propositions can be assessed.

3 Objective World and natural Languages

Following Grant and Quiggin (2006), we start with a formal language and an external description

of the world, in which each state of the world is a complete description of the truth or falsity of

each primitive proposition. More precisely, given a �nite non-empty set of primitive propositions

P = fp1; :::; pKg, a state of the world ! = (!1; :::; !K) 2 f0; 1gK is a K-dimensional vector where

for all pk 2 P , !k = 0 if and only if proposition k is false. A state of the world is a complete

description of the truth and/or falsity of each primitive proposition. The set of states of the world

is denoted by 
 = 2K . From the perspective of an unboundedly rational external observer, there

is a probability measure f on 
.
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3.1 Individual Logical Languages

Individuals in our model will not, in general, be in a position to formulate or check all the

propositions in P , and will therefore be unable by themselves to give an exhaustive speci�cation

of the state space. We shall assume, however, that their individual logical languages, if combined

and closed under standard logical operations, would generate an exhaustive speci�cation of 
,

with expressive power equivalent to P .

Let I = f1; 2g be the player set. Each player i 2 I can only check the truth or falsity of

some non-empty subset of primitive propositions which we denote by P i � P and for which

P 1 [ P 2 = P . Adopting the natural order from P for the propositions in P i, a state of the

world ! = (!1; :::; !K) 2 f0; 1gK induces a unique P i-dimensional vector si (!) = (sipk)pk2P i 2

f0; 1gP i

where sipk = 0 if and only if !k = 0. We adopt S
i := f0; 1gP i

as the personal state space

of player i, and presume that he observes the personal state si(!) 2 Si when the state ! 2 


obtains.

Restating this point from the semantic perspective, we do not presume that a player knows

the state space 
 or the actual state of the world. Rather, each of the players i = 1; 2 has access

to a state-contingent representation Si of the world, which may be viewed as a coarsening of 
,

as in Grant and Quiggin (2006). More precisely, when ! obtains, player i observes si = si (!).

A simple distinction between our formulation and a more standard one is noted by comparing

ours to that of Osborne and Rubinstein�s formulation of a Bayesian Game (1994, Section 2.6).

In both formulations, the starting point is a set of states of the world and a signal function.

In our formulation, player i upon receiving si 2 Si knows only the truth and falsity of the

propositions in P i. He may be unaware of the propositions in P � P i and of the set of states 
.

In the formulation of a Bayesian game by Osbourne and Rubinstein, the player knows also the

set f! 2 
 : si(!) = sig, by which we can interpret him as knowing all the other propositions in

P � P i as well as the set 
.

We now turn our attention to the logical language of a player. We presume that this can be

described by a set of formulas Li obtained inductively from P i as follows:

6



F1: any p 2 P i is a formula;

F2: if A and B are formula, so are :A,:B, A ^ B, and A _ B; (where :, ^ and _, refer to the

logical operations of �NOT�, �(inclusive) OR�and �AND�, respectively).

F3: Every formula is obtained by a �nite number of applications of F1 and F2.

From a semantic point of view, the truth or falsity of each proposition A in a player i�s

language Li is determined for each personal state si(!) 2 Si from the truth or falsity of A at the

corresponding ! 2 
. The truth assignment of player i is the function ki : Si � P i �! f0; 1g

de�ned by ki(si; p) = sip for each p 2 P i:We then extend the function ki to the remaining formula

Li inductively as follows. For any A;B 2 Li:

T1: ki(si;:A) = 1 i¤ ki(si; A) = 0;

T2: ki(si; A ^B) = 1 i¤ ki(si; A) = 1 and ki(si; B) = 1;

T3: ki(si; A _B) = 1 i¤ ki(si; A) = 1 or ki(si; B) = 1.

In summary, a state of the world ! determines a signal si(!) that player i receives. The truth

or falsity of a formula A 2 Li at state si(!) is then determined by ki and T1, T2, T3.

For example, suppose that P = fp1; p2; p3g, and P i = fp1; p3g. Then,


 = f(0; 0; 0); (0; 0; 1); (0; 1; 0); (0; 1; 1); (1; 0; 0); (1; 0; 1); (1; 1; 0); (1; 1; 1)g, and by our convention,

Si = f(0; 0); (0; 1); (1; 0); (1; 1)g. If the state of the world ! = (!1; !2; !3) occurs, then player

i receives the signal si(!) = (!1; !3). For example, if ! = (0; 1; 0), then player i observes

si(!) = (0; 0). In this case, only proposition p2 is true, but player i only sees that p1 and p3

are false. He might not even conceive of p2 since it is not in his language. He can, however, check

the truth or falsity of any formula in Li using his signal and T1 to T3.

Interactions between players with limited awareness gives rise to a lattice structure similar to

that described by Heifetz, Meier and Schipper (2006).2 In this lattice structure, languages may

be ordered by the subset relationship on the set of primitive propositions from which they are

generated, or equivalent by the re�nement of the partition of 
 they generate. The meet and

join relationships ^ are de�ned in the natural way. For the purposes of the present paper we can

2 For a similar development in a dynamic context of individual unawareness, see Grant and Quiggin (2006).
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focus on the minimal non-trivial lattice consisting of L1; L2; L1 _L2; L1 ^L2: So we do not model

contingencies unforeseen by either party, which would require a language richer than L1 _ L2.

Conversely, all contingencies expressible in L1 ^ L2 are mutually expressible (this term will be

made precise below) so there is no need to consider any less re�ned language than L1 ^ L2.

3.2 Probabilities, beliefs and awareness

We presume that player i�s prior belief gi over Si is consistent with the probability measure f

that describes the beliefs of an external observer in the following sense. For each si 2 Si, if we let


(si) = f! 2 
 : si (!) = sig. Then we require that:

gi
�
si
�
=

X
!2
(si)

f (!) .

For any random variable X measurable with respect to Si, de�ne

ESi [X] =
X
si2Si

[X (s)] gi(si).

Similarly, for any random variable Y measurable with respect to 
, de�ne

E
 [X] =
X
!2


[Y (!)] f(!).

In the terminology of Grant and Quiggin (2006), the individual�s beliefs, in the pre-contract

situation, represent Bayesianism in a restricted domain. That is, neither party�s beliefs about the

propositions accessible to them in the natural language are conditioned on implicit beliefs about

propositions in P � P i, so their beliefs may be represented simply as the marginal distribution

derived from f . Thus, the model presented here represents a minimal departure from the standard

assumption of unbounded rationality.

Although players in this model have probabilistic beliefs, they are not in a position to act

as consistent Bayesians. They may encounter evidence (such as a contract dispute) that reveals

that their representation of the world is incomplete. Normally parties to a contract will have

past experience of contracts some of which have ended in dispute. Thus they will be aware (in a

sense made precise by Grant and Quiggin, 2006) of the possibility of disputes, even though this

possibility is not explicitly represented in their state-contingent model of the world.
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4 Contracts

We consider choice settings in which players can write contracts to share risk via transfers. In the

absence of contracts we presume that each player i faces risk described by a personal-state con-

tingent income vector Zi 2 RSi . When the state si 2 Si obtains, player i receives the endowment

Zi(si). He is presumed to be an expected utility maximizer with utility function ui : R ! R .

The expected utility of his personal-state contingent income vector is his reservation utility which

we denote by �ui =
P

si2Si g
i
�
si
�
� ui(Zi

�
si
�
).

In addition to the propositions in P which can be used to describe the world, we assume

that the players speak in a shared informal �natural�language. This is described by a �nite set

of contingencies Q = fq1; :::; qMg. Contracts will be written in terms of these contingencies. A

vector x = (xq)q2Q 2 f0; 1gQ is interpreted as meaning all the contingencies q 2 Q with xq = 1

are true and all those with xq = 0 are false. We will allow players to write transfers on the vectors

in f0; 1gQ.

A contract is a function t : f0; 1gQ ! R.

The function t is a transfer function specifying the amount of transfer from player 2 to player

1 as a function of the contingencies that are true.

Each player interprets the contract using his formal language. For this purpose we assume

that each player i has a translation function which is an injection T i : Q ! Li. He uses his

translation function to determine the truth or falsity of each contingency. Formally, each player

i 2 I checks the vector x̂i
�
si
�
2 f0; 1gQ, where x̂iq(si) = 1 if and only if ki(si; T i(q)) = 1. For

notational convenience we de�ne xi (!) � x̂i � si (!). When a contract t is in place and state !

obtains, player i expects the transfer from player 2 to player 1 to be t(xi(!)). Since the players

have di¤erent languages and translation functions, there is no guarantee that t(x1(!)) = t(x2(!))

for each ! 2 
. We do impose, however, one condition on the translation functions. We presume

that the translation functions T 1 and T 2 are consistent on mutually expressible parts in the sense

that for each q 2 Q and for all i; j,

T i(q) 2 Lj implies that T i(q) = T j(q).

9



If the translation functions are consistent on mutually expressible parts and P 1 = P 2 (= P ),

then T 1 = T 2 everywhere, since in this case L1 = L2. In such a case, there would be no chance

for disputes in our setup. The possibility of a dispute might occur only when T 1(q) 6= T 2(q).

Restricting analysis to translation functions that are consistent on mutually expressible parts

means that a dispute might only occur when one player�s translation of some contingency q is

not expressible in the other player�s language. More generally, we shall refer to a contingency

q 2 Q as an unambiguous contingency if it is semantically equivalent for the two parties, that is,

x1q(!) = x2q(!) for each ! 2 
. Let �Q � Q, denote the set of unambiguous contingencies.

The support of a contract t is the set Qt � Q of contingencies that make a di¤erence to the

transfer function t: We write Qt to emphasize that this set depends on the transfer function t.

More precisely, q 2 Qt i¤ for some x 2 f0; 1gQ ; t (x) 6= t ((1� xq)q; x�q) where x�q is the vector

obtained by deleting the q-th element of x [� (xq; x�q)], and thus t
�
(1� xq)q ; x�q

�
is the transfer

made in the event that the truth value of q is reversed relative to x. Hence a contract t is an

unambiguous contract if Qt � �Q. Players will never have any problem writing contracts on this

set of contingencies.

4.1 Misunderstandings and Dispute Costs

Although various reasons why contracts might be incomplete have been suggested (such as that

checking the truth value of contingencies is costly to the parties), we focus in this paper on the

potential cost of disputes arising from di¤erent interpretations of a contract. When a contract

involves contingencies that are translated in di¤erent ways by the two parties, there is a potential

for disputes to arise over which contingencies have actually been met even after the checking has

been done by each party. These disputes will in general be costly, so forward-looking parties might

choose incomplete contracts in an attempt to avoid them.

If a state ! 2 
 is realized and t
�
x1 (!)

�
� t
�
x2 (!)

�
< 0, we assume that although there is a

misunderstanding in terms of the amount of the transfer, this can be amicably resolved. However,

if t
�
x1 (!)

�
� t

�
x2 (!)

�
> 0, that is, one or both parties think they should receive a payment

greater than the other party thinks it should make, then a dispute occurs. Dispute costs in any
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state ! are assumed to depend on the extent of disagreement. More precisely, the size of a dispute

at a state ! is de�ned by

d (!; t) = t
�
x1 (!)

�
� t
�
x2 (!)

�
.

and we suppose that the costs of a dispute are increasing in the size of the dispute d (!; t), that

is, we suppose there are (convex and increasing) functions �1 : R ! R, �2 : R ! R. We

assume �i (0) = 0; i = 1; 2; that is, if the players agree, there is no dispute. The surplus-splitting

assumption for d < 0 is embodied in a requirement that �1 (d) + �2 (d) = d, d < 0. Since

�i is convex, it has right and left derivatives everywhere. Denote the left-hand and right-hand

derivatives by
�
�i+
�0
(d) and

�
�i�
�0
(d), respectively. Our conditions imply that �1 (d) and �1 (d)

are linear for d � 0. We might expect a kink at d = 0 but do not preclude kinks at d > 0.

From the external perspective, we de�ne the expected utility for i conditional on
�
t; si

�
by:

CEU i(t; si) =

P
!2si u

i
�
Zi
�
si
�
+ (�1)(i�1) t

�
x
�
si
��
� �i (d(!; t)

�
)f (!)

gi(si)
(1)

Now consider the preferences of individual i, who does not have access to a description su¢ -

ciently re�ned to express the terms on the RHS of (1). We assume that the these preferences over

contracts may be represented by a real-valued function U i : f0; 1gQ ! R. We assume that, for

every unambiguous contract t:

U i (t) =
X
si2Si

gi(si)�
�
CEU(t; si)

�
=

X
si2Si

ui
�
Zi
�
si
�
+ (�1)(i�1) t

�
x̂i
�
si
���

)gi(si) (2)

That is, in the absence of ambiguity, each individual�s preferences coincide with those derived

from the external perspective. This is natural, since, for unambiguous contracts, both individuals

have access to a common language expressive enough to compute CEU i(t; si), given the available

information.

De�nition 1 An individual is ambiguity-neutral if for every contract t:

U i (t) =
X
si2Si

gi(si)�
�
CEU(t; si)

�
=

X
!2


ui
�
Zi
�
si (!)

�
+ (�1)(i�1) t

�
xi (!)

�
� �i (d(!; t)

�
)f (!) . (3)

11



If this condition is satis�ed, the individual�s preferences coincide with those given by CEU i(t; si),

even in ambiguous situations. Note that this equality does not imply that the individual has ac-

cess to the values f (!) and �i (d(!; t) required for the computation of CEU i(t; si). It simply

states that an ambiguity-neutral individual�s ranking of possible contracts coincides with that

which would be computed by the external observer, given knowledge of the utility index ui. This

point is of crucial relevance in relation to the analysis of Maskin and Tirole (1999). Even if in-

dividual preferences are ambiguity-neutral, individuals cannot make calculations with respect to

a probability distribution over outcomes and therefore cannot write and implement the outcome-

contingent contracts required to achieve the �rst-best. In particular, although individuals are

assumed to be aware (in the sense of Grant and Quiggin 2006) of the possibility of dispute, they

do not have access either to a state-contingent description of the world �ne enough to include the

dispute states (since these states arise precisely from coarseness in individual�s partitions of the

state space) or to a probability distribution including the probability of dispute.

More generally, we may de�ne ambiguity aversion in a fashion consistent with the character-

ization of risk-aversion, proposed by Yaari (1969), as being more averse to moves from certainty

to risk than a risk-neutral individual. Supposing that the individual never prefers an ambiguous

contract when the external planner would prefer an unambiguous one, they may be characterized

as ambiguity-averse. More formally.

De�nition 2 An individual is ambiguity-averse if, for any t, t0 such that t is unambiguous and

t0 is ambiguous,

X
si2Si

gi(si)�
�
CEU(t; si)

�
�
X
si2Si

gi(si)�
�
CEU(t0; si)

�
) U i (t) � U i (t0)

That is, an individual is regarded as being ambiguity-averse if he ranks an unambiguous con-

tract over an ambiguous one whenever an external observer would rank the unambiguous contract

more highly. Note that, as would be expected, ambiguity-neutrality is a polar case of ambiguity

aversion where the converse implication holds. To de�ne the opposite polar case, we will say that

a player is maximally ambiguity-averse if U i (t) � U i (t0) for any t, t0 such that t is unambiguous

and t0 is ambiguous.
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If the individual is risk-neutral as well as being ambiguity-neutral (that is, ui (�) is a¢ ne) then

U i (t) reduces to

ESi
h
Zi(si) + (�1)(i�1) t

�
x̂i
�i
� �i (t)

where

�i (t) =
X
!2


�i (d(!; t))f (!) ,

is the unconditional expected dispute cost. That is, the utility of the contract is simply the

expected value of the contract were it unambiguous, less the expected dispute cost.

4.2 The Nash bargaining contract

As is standard in economics, we shall assume the parties select the contract that corresponds to

the Nash bargaining solution. Here, individual rationality of each player i is evaluated relative to

his state-contigent expected utility �ui which he would obtain in the absence of a contract.

The Nash bargaining solution may be obtained by choosing a transfer function t : f0; 1gQ ! R

to maximize

W =

2X
i=1

ln
�
U i (t)� �ui

�
:

4.3 Optimal Contracts

In order to provide a benchmark for assessing the welfare characteristics of contracts potentially

available to the players, we now consider the problem faced by an external planner seeking to

maximize welfare under a range of constraints on the set of feasible contracts. The lattice structure

gives rise to a range of such solution concepts.

4.3.1 Constrained optimal contract

First let us consider the constrained-optimal contract, evaluated from the external perspective.

The cost of a dispute at ! 2 
 can be abbreviated by

�i (!) = �i(t
�
x1(!

�
)� t

�
x2(!

�
)

= �i((�1)(i�1) t
�
xi(!

�
) + (�1)i t

�
x(3�i)(!

�
).
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The planner chooses a transfer function t : f0; 1gQ ! R to maximize:

W p =
2X
i=1

ln�ui

where

�ui =
X
!2


ui
�
Zi
�
si (!)

�
+ (�1)(i�1) t

�
xi (!)

�
� �i(!)

�
f (!)� �ui.

For each ! 2 
, set ui(!) := ui
�
Zi
�
si (!)

�
+ (�1)(i�1) t

�
xi (!)

�
� �i(!)

�
; and for each

x 2 f0; 1gQ, set 
i (x) :=
�
! : xi (!) = x

	
.

Since our structural assumptions have ensured the planner�s problem is a concave program,

the �rst order conditions are both necessary and su¢ cient.

The FOC�s consist of two conditions for each x:

2X
i=1

1

�ui

24 X
!2
i(x)

(�1)(i�1)
�
ui
�0
(!) f (!)

+
X

!2
1(x)\[
n
2(x)]

(�1)i
�
ui
�0
(!)

�
�i+
�0
(!)f (!)

+
X

!2
2(x)\[
n
1(x)]

(�1)(i�1)
�
ui
�0
(!)

�
�i�
�0
(!)f (!)

35 � 0, (4)

and,

2X
i=1

1

�ui

24 X
!2
i(x)

(�1)(i�1)
�
ui
�0
(!) f (!)

+
X

!2
1(x)\[
n
2(x)]

(�1)i
�
ui
�0
(!)

�
�i�
�0
(!)f (!)

+
X

!2
2(x)\[
n
1(x)]

(�1)(i�1)
�
ui
�0
(!)

�
�i+
�0
(!)f (!)

35 � 0, (5)

The �rst condition (4) comes from the consideration of raising the transfer t at x. The second

condition (5) comes from the consideration of lowering the transfer t at x. The �rst term in the

brackets of both conditions corresponds to the situation where the player i sees x. The second

term corresponds to the dispute event when player 1 sees x and player 2 sees something else. The

third term corresponds to the dispute event when player 2 sees x and player 1 sees something else.

Notice that if a particular truth assignment of the contingencies x does not lead to any disputes,

14



then the �rst-order-condition on t (x) collapses to:

2X
i=1

(�1)(i�1)
24 X
si:x(si)=x

�
ui
�0 �

Zi
�
si
�
+ (�1)(i�1) t (x)

�
gi
�
si
�35

�ui
= 0 (6)

Notice that the constrained-optimal contract is the one that would be chosen by an external

planner, seeking to maximize the product of gains in expected utility in the knowledge that the

players would have to implement the contract and deal with any resulting disputes. This contract

is available to the players as a solution to their bargaining problem. However, the constrained-

optimal might not be chosen by the players bargaining in the absence of a planner. Recall that the

ranking of contracts by individual i is given by U i(t) which might not coincide with the rankingP
si2Si g

i(si)�
�
CEU(t; si)

�
used by the planner.

We can specify a su¢ cient condition for the two contracts to coincide. When both players are

ambiguity neutral, (3) implies:

Lemma 1 For ambiguity-neutral players, the planner�s constrained-optimal contract coincides

with the Nash bargaining solution for the players.

4.3.2 Unconstrained Optimal Contract

The unconstrained optimal contract can be viewed as the contract that would be written by an

external planner with access to the maximally expressive formal language L1 _ L2 to maximize

the Nash product again using
P

si2Si g
i(si)�

�
CEU(t; si)

�
in place of U i(t). Equivalently, this is

the optimal contract conditional on 
:

Unless the players have access to L1 _ L2, the unconstrained optimal contract will not be a

feasible solution to the contracting problem facing them. In the special case where P 1 = P 2 =

P = fT 1(q) : q 2 Qg, so that x1(!) = x2(!) = ! for all ! 2 
, the parties can implement the

unconstrained optimal contract without any possibility of dispute. Hence, the optimal constrained

and optimal unconstrained contracts coincide.
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In this solution, the �rst-order-condition on t (!) becomes, for each !:

2X
i=1

(�1)(i�1)
�
ui
�0 �

Zi
�
si (!)

�
+ (�1)(i�1) t (!)

�
 X
!2


ui
�
Zi (si (!)) + (�1)(i�1) t (!)

�
f (!)� �ui

! = 0.

4.3.3 Optimal unambiguous contract

Finally, consider the optimal unambiguous contract. We restrict contracts to those whose support

are unambiguous, that is, Qt � �Q, and de�ne for each x, the equivalence class

[x] =
�
x0 : x0q = xq 8q 2 �Q

	
For a contract t to be unambiguous, we require t (x0) = t (x), for all x0 in [x].

In this solution, the planner chooses transfer function t : f0; 1gQ ! R with support in �Q, to

maximize

W u =
2X
i=1

ln

24 X
si: x̂i(si)=x

ui
�
Zi
�
si
�
+ (�1)(i�1) t (x)

�
gi
�
si
�
� �ui

35
This yields the �rst-order-condition on t (x),

2X
i=1

(�1)(i�1)

264 X
fsi2(x̂i)�1[x]g

�
ui
�0 �

Zi
�
si
�
+ (�1)(i�1) t (x)

�
gi
�
si
�375

�ui
= 0. (7)

where
�
x̂i
��1

[x] is the set of signal realizations for player i that map into [x].

Unlike the unconstrained optimal contract, the optimal unambiguous contract can be imple-

mented by the parties. In the situation where dispute costs � are large enough to rule out any

ambiguous contract, the set of feasible contracts consists solely of unambiguous contracts. In this

case, it is easy to see that the optimal unambiguous solution is the same as the Nash bargaining

solution. We record this fact as a lemma.

Lemma 2 The optimal unambiguous contract is the Nash bargaining solution for players re-

stricted to the set of unambiguous contracts.

In the special case where P 1 = P 2 = P = fT 1(q) : q 2 Qg, consistency on mutually ex-

pressible parts ensures that the optimal unambiguous contract coincides with the constrained and

unconstrained optimal contracts.
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4.4 Welfare

We now consider a welfare ranking of the solutions discussed above. We focus on the case where

the problem is symmetric.

De�nition 3 A contracting problem is symmetric if for any t, there exists t0 such that U i (t) =

U3�i (t0). Furthermore, if U i (t) = U3�i (t),

then E

h
ui
�
Zi + (�1)(i�1) t� �i

�i
= E


h
u3�i

�
Z3�i + (�1)i t� �3�i

�i
, i = 1; 2.

The �rst part of the de�nition requires that for each available contract there exists a counterpart

in which the utility outcomes are reversed. The second part requires that if a contract yields the

same (ex ante) utility for both players then it also yields the same expected utility for the two

players calculated from the perspective of the external observer.

Notice that in a symmetric problem, the external planner�s constrained-optimal solution, the

players�Nash bargaining solution and the optimal unambiguous contract are all ones for which

U1 (t) = U2 (t) and thus they also result in the same expected utility for both players calculated

from the perspective of the external observer. Our main result is

Proposition 3 In a symmetric problem, with ambiguity-averse players the solutions may be

Pareto-ranked by the external observer (in decreasing order) as follows:

(i) Constrained-optimal solution

(ii) Nash bargaining solution

(iii) Optimal unambiguous contract

In terms of the players�own preferences (i.e.
�
U1; U2

�
) (ii) is Pareto-dominant and the ranking

between (i) and (iii) depends on ambiguity aversion: (ii)=(i) for ambiguity-neutral players and

(ii)=(iii) for maximally ambiguity-averse players.

Proof. First in terms of the external observer we have: (a) since the Nash bargaining solution

is available to the external observer, it can be no better than the solution to the constrained

problem hence (i) � (ii), and (b) if (iii) > (ii) then ambiguity averse players must also rank (iii)
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above (ii) but this cannot hold since the optimal unambiguous contract is available to the players

in their Nash bargaining problem, hence it follows (ii) � (iii), as required. Second, in terms of

the players themselves: we have by construction (ii) as Pareto-dominant in the set of equal utility

contracts, so (ii) � (i) and (ii) � (iii). Lemma 1 implies (ii) = (i) for ambiguity-neutral players

and lemma 2 implies (ii) = (iii) for maximally ambiguity-averse players. �

4.5 Ex ante re�nement

The solutions available to the players through contracting are Pareto-dominated by the uncon-

strained optimal solution that would be selected and implemented by an external planner. Al-

though this fact cannot be expressed in the language available to the players, they will in general

be aware that the contracts available to them are incomplete and subject to the possibility of

dispute. Expressing awareness of such possibilities requires an extension of the language available

to the players, such as that de�ned by Grant and Quiggin (2006). As Grant and Quiggin show,

beliefs about such possibilities will not, in general be expressible in probabilistic terms, and in

particular will not admit of contingent contracting.

Suppose that the players are aware of the possibility of dispute and are also aware that by

expending e¤ort to improve their mutual understanding before contracting, they can reduce or

eliminate the ambiguity in the contracts available to them in their common language. We will

refer to the result of such e¤ort as ex ante re�nement of the state space. The cost of e¤ort may

be assumed known, but the bene�ts available from re�nement of the state space will not be.

Nevertheless, the players may choose to incur the cost in the hope that it will be less than the

resulting bene�ts.

From the external perspective, it is possible to compute the expected bene�ts and therefore

determine whether they exceed the costs. Some instances are illustrated in the examples below.

In the ex ante position, the players will not be able to make such calculations on a probabilistic

basis. In making their decisions, they may rely on past experience, as is modelled, for example, in

the case-based decision theory of Gilboa and Schmeidler (1995). Alternatively, they may rely on

the advice of external advisers whose understanding is closer to that of the ideal external planner

18



invoked here as an analytical device.

4.6 Example �Incomplete Contracting & Incomplete Risk-sharing

We now develop the example presented informally in Section 2. We assume the players are

ambiguity-neutral so the constrained-optimal and Nash bargaining solutions coincide.

The set of propositions that determine the states of the world are P = fp1; p2g, where the

propositions are interpreted as p1 = �The card is white at the top�and p2 = �The card is white

at the bottom�. The set P generates the underlying state space 
 = f(1; 1) ; (1; 0) ; (0; 1) ; (0; 0)g,

where, e.g., (1; 0) corresponds to the proposition p1 ^ :p2 and the state in which the card ranges

in shades of gray from white at the top to black at the bottom. The probability over the state

space is given by: f (1; 1) = f (0; 0) = (1� ")=2 and f (0; 1) = f (1; 0) = "=2, " 2 (0; 1=2). Observe

that the number " represents the probability of obtaining a �gray�card.

Row has access to the proposition p1, that is PRow = fp1g and Col has access to the set

PCol = fp2g. The state spaces for Row and Col are given by SRow = f(1)Row; (0)Rowg and

SCol = f(1)Col; (0)Colg. Hence gi
�
si
�
= 1=2, for si = 1; 0, and for i = Row, Col.

The state-contingent endowments of the two parties are given by: ZRow
�
sRow

�
= sRow and

ZCol
�
sCol

�
= 1� sCol. That is, a card perceived to be �white�by Row is good for her, and a card

perceived to be �black�by Col is good for him.

To describe a contract in our framework, we need the set of contingencies in the natural

language. We start with Q = fwg where w corresponds to the natural language contingency �the

card drawn is white�. Formally, we have the translation functions for Row and Col de�ned by:

TRow(w) = p1 and TCol(w) = p2.

Parties are risk-averse and preferences over lotteries conform to expected utility with a concave

and strictly increasing utility preference scaling function, u (�). Let the cost of dispute for both

players be given by the twice-continuously-di¤erentiable-everywhere-except-at-zero function � :

R! R, with � (d) = d=2, for d � 0, �0+ (0) > 1=2 and �00 (d) > 0, for d > 0. The rationale for us

to require �0 (d) > 1=2 for d > 0, is so that if the size of dispute increases by 1 the additional cost

summed across both parties is more than 1.
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Note that this is a symmetric problem, and the Nash bargaining solution will also be symmetric.

The class of symmetric contracts involving partial hedging with transfers based on (w) consists

of contracts t, where t (x) = � (1=2� x), � 2 [0; 1], recalling that x = 1 corresponds to w is true.

Notice � = 0 corresponds to no contract, leaving both parties fully exposed to the risk associated

with the color of the card drawn. By contrast, � = 1 corresponds to a �full�risk-sharing contract.

The constrained-optimal value of � depends on the parameters of the model: u, � and ". To

evaluate the constrained-optimal �, �rst note the ex ante �expected�utility for ambiguity-neutral

players of

U i (t) =

�
1� "
2

�
u

�
1� �

2

�
+
"

2
u (1) +

"

2
u

�
�

2
� � (�)

�
+

�
1� "
2

�
u

�
�

2

�
Di¤erentiating wrt � yields the �rst order necessary condition (for an interior solution, that is

� 2 (0; 1)):

� (1� ")
4

u0
�
1� �

2

�
� "

2
u0
�
�

2
� � (�)

��
�0 (�)� 1

2

�
+

�
1� "
4

�
u0
�
�

2

�
= 0

) (1� ")
2

�
u0
�
�

2

�
� u0

�
1� �

2

��
= "u0

�
�

2
� � (�)

��
�0 (�)� 1

2

�
. (8)

We observe that �� = 1 is optimal i¤ " = 0, since as � ! 1, the LHS of (8) goes to zero, while

the RHS is strictly positive unless " = 0.

For �� = 0 to be an optimum (i.e., for the contract to leave the two parties completely exposed

to the risk associated with the color of the card drawn) we require

(1� ")
2

[u0 (0)� u0 (1)] < "u0 (0)

�
�0+ (0)�

1

2

�
.

Rearranging yields

1

2
� u0 (0)� u0 (1)

u0 (0)
<

"

1� "

�
�0+ (0)�

1

2

�
. (9)

That is, if inequality (9) holds then the constrained-optimal contract is incomplete in the sense

that it leaves both individuals fully exposed to the risk associated with the color of the card.

The inequality (9) may be interpreted as saying the marginal bene�t of reducing the unhedged

risk is less than the marginal cost of dispute incurred by conditioning on a proposition open to

ambiguous interpretation. Intuitively, this condition is more likely to hold (i) the more likely a
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dispute will arise (i.e., the greater is "), (ii) the larger is the marginal cost of disagreement (i.e.

�0+ (0)); and (iii) the less risk averse the individual is.

To see (iii), �rst notice that inequality (9) always holds for a risk neutral person since the

left-hand side is zero and the right-hand is positive (unless " = 0). More generally, suppose v is

less risk averse than u, that is, there exists a strictly increasing and convex function  , such that

v =  � u. Then we have,

v0 (0)� v0 (1)
v0 (0)

=
 0 (u (0)) (u0 (0))�  0 (u (1)) (u0 (1))

 0 (u (0)) (u0 (0))

�  0 (u (0)) (u0 (0))�  0 (u (0)) (u0 (1))
 0 (u (0)) (u0 (0))

=
u0 (0)� u0 (1)

u0 (0)
.

The inequality follows from the fact that the convexity of  implies  0 (u (1)) �  0 (u (0)).

4.6.1 �Re�ning�the State Space Ex Ante

Suppose now instead, if both parties each incur a cost today of k they can �learn�about shades of

gray and hence have access to the full state space 
 .

The Nash bargaining contract is now the unconstrained optimal contract. This contract sets

t(!1; !2) = (1� !1 � !2) =2, and yields a net expected utility equal to

(1� ")u
�
1

2
� k
�
+ "

�
1

2
u (0� k) + 1

2
u (1� k)

�
.

So Row and Col would bene�t from incurring the cost k of learning, if

U i (t) < (1� ")u
�
1

2
� k
�
� "

�
1

2
u (0� k) + 1

2
u (1� k)

�
That is,

(1� ")
��
u

�
1

2
+
1� ��

2

�
� u

�
1

2
� k
��
�
�
u

�
1

2
� k
�
� u

�
1

2
� 1� �

�

2

���
+"

�
[u (1)� u (1� k)] +

�
u

�
0�

�
� (��)� ��

2

��
� u (0� k)

��
< 0 (10)

Row and Col cannot calculate this value ex ante, but it can be derived from the external

perspective which is available to them after re�nement.
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Notice that for an a¢ ne (i.e. risk neutral) utility function, inequality (10) holds if

k < " (� (��)� ��=2) =2. (11)

Since, unhedged risk is costly for a risk averse person and the marginal utility of incurring the ex

ante re�nement cost is also lower for higher incomes than for the lower incomes, it follows that

inequality (11) is a su¢ cient condition for Row and Col to bene�t from re�nement.

5 Concluding comments

In this paper, we have shown how semantic ambiguity in contracting creates obstacles to the

achievement of complete risk-sharing and optimal coordination of production. Semantic ambiguity

may give rise to disputes even when both parties to a contract act honestly, with no attempt to

conceal or misrepresent private information. Nevertheless, given the limits of precision in language,

economic agents may prefer ambiguous contracts to the alternative contracts available given the

constraints imposed by a requirement for unambiguous speci�cation.

References

Chew, Soo-Hong and Jacob Sagi, 2006. �Event Exchangeability: Probabilistic Sophistication
Without Continuity or Monotonicity.�Econometrica 74(3), 771-786.

Ellsberg, D. 1961. �Risk, ambiguity and the Savage axioms�, Quarterly Journal of Economics,
75(4), 643-69.

Gilboa, I. and Schmeidler, D. 1995. �Case-based decision theory�, Quarterly Journal of Eco-
nomics, 110, 605-39.

Grant, S. and Quiggin, J. 2006. Learning and Discovery, Risk and Sustainable Management
Group Working Paper, R05_7

Hart, Oliver D and John Moore, 1988. �Incomplete Contracts and Renegotiation.�Econo-
metrica, 56(4), 755-85.

Hart, Oliver D. and John Moore, 1999. �Foundations of Incomplete Contracts.�Review of
Economic Studies, 66(1), 115-38.

Heifetz, A., Meier, M. and Schipper, B. 2006. �Interactive Unawareness�, Journal of Economic
Theory, forthcoming,

Knight, F. 1921. Risk, Uncertainty and Pro�t, Houghton Mi­ in, New York.

Maskin, E. and Tirole, J. (1999), �Unforeseen Contingencies and Incomplete Contracts�,
Review of Economic Studies, 66(1), 83-114.

22



Mukerji, Sujoy, 1998, �Ambiguity Aversion and Incompleteness of Contractual Form,�Amer-
ican Economic Review 88(5), 1207-1231.

Mukerji, Sujoy and Jean-Marc Tallon, 2001, �Ambiguity aversion and incompleteness of
�nancial markets.�Review of Economic Studies, 68(4), 883-904.

Osborne, M.J. and Rubinstein, A. 1994. A Course in Game Theory, MIT Press, Cambridge,
Mass.

Yaari, M. (1969), �Some remarks on measures of risk aversion and their uses�, Journal of
Economic Theory 1(3), 315?29.

23


