
 
R

es
ea

rc
h 

su
pp

or
te

d 
by

 a
n 

A
us

tra
lia

n 
R

es
ea

rc
h 

C
ou

nc
il 

Fe
de

ra
tio

n 
Fe

llo
w

sh
ip

 
ht

tp
://

w
w

w
.a

rc
.g

ov
.a

u/
gr

an
t_

pr
og

ra
m

s/
di

sc
ov

er
y_

fe
de

ra
tio

n.
ht

m
 

 
 

Cost Minimization and Asset Pricing 
 

Robert G. Chambers 
Dept of Agricultural and Resource Economics, University of Maryland, 

College Park 
 

and 
  

John Quiggin 
Australian Research Council Federation Fellow, University of Queensland 

 
 
 
 

 
Risk & Sustainable Management Group 

 

 

Schools of Economics and Political Science 
University of Queensland 

Brisbane, 4072 
rsmg@uq.edu.au 

http://www.uq.edu.au/economics/rsmg 

 

Risk & Uncertainty Program Working Paper: R05#3 



Cost Minimization and Asset Pricing

Abstract

A cost-based approach to asset-pricing equilibrium relationships is 

developed. A cost function induces a stochastic discount factor (pricing kernel) that 

is a function of random output, prices, and capital stockt. By eliminating 

opportunities for arbitrage between financial markets and the production 

technology, firms minimize the current cost of future consumption. The first-order 

conditions for this cost minimization problem generate the stochastic discount 

factor. The cost-based approach is dual in nature and determines state-claim prices 

as the current-period marginal cost of increasing future stochastic output. A cost-

based pricing kernel is estimated using annual time-series data on macroeconomic 

variables and returns data.



Asset pricing theory requires that an asset�s price equals the inner product of a stochastic

discount factor (or pricing kernel) and the asset�s stochastic payout (Ross, 1978; Harrison

and Kreps, 1979; Hansen and Singleton, 1982; Clark, 1993; Cochrane, 2001; Campbell, 2003;

Du¢ e, 2003; and many, many others). The stochastic discount factor can be rationalized as

subjective Arrow "state-claim prices". If the stochastic return on an asset is denoted by ~R

and the stochastic discount factor is represented by ~m; the equilibrium implication is that

E
h
~m ~R
i
= 1; (1)

where E represents the expectation operator.

The consumption-based approach identi�es ~m with the consumer�s intertemporal mar-

ginal rate of substitution between nonstochastic current period consumption and stochastic

future consumption. An important, and apparently unresolved, empirical challenge to the

consumption-based approach is that the resulting models do not appear to �t market data

particularly well (Hansen and Singleton, 1982; Hansen and Jagannathan, 1991, 1997; Camp-

bell, Lo, and MacKinlay, 1997; Cochrane, 2001; Campbell, 2003). Perhaps the most famous

manifestation of this lack of �t is the equity-premium puzzle introduced by Shiller (1982)

and Mehra and Prescott (1985). As is well-known, for the most popular speci�cation of the

consumption-based discount factor, the consumption-based model can be reconciled with

observed low volatility of aggregate consumption growth only if risk aversion is much larger

than is commonly believed.

Our intent is not to resolve the equity-premium puzzle or to explain the perceived poor

performance of the consumption-based model. Instead, our focus is on enlarging the range

of economic models available for asset pricing analysis. We consider a representation of the

stochastic discount factor that arises not from consumers optimally smoothing stochastic

consumption across time but from the intertemporal optimization behavior of producing

�rms that have access to �nancial markets. The associated asset pricing rule emerges from

the rational need to exploit any opportunities for risklessly raising intertemporal returns or

lowering current period costs.

Even though many presentations of �nancial market equilibrium quite consciously ignore

producers, there are a number of reasons to take their perspective in looking at asset-market

1



equilibrium. Most importantly, as business cycle theory suggests, the macroeconomic �uctua-

tions that drive �uctuations in asset markets are most closely associated with production-side

shocks. Financial markets react to real �uctuations. Ultimately any theory that explains

asset-price behavior must be capable of portraying and measuring that linkage. The close

causal nexus between production-side �uctuations and �nancial markets is underlined by

the observation that many �nancial markets originally arose to manage risks associated with

uncertain production. Empirically the production side of the economy also seems more vari-

able than the consumption side. It is precisely the smoothness of the consumption side of

the aggregate economy relative to the production and �nancial parts of the economy that

makes the equity premium puzzle so compelling to theorists and empiricists.

Our analysis is most closely related to Cochrane�s (1991) production-based and Cochrane�s

(1996) investment-based asset pricing models. Cochrane (1991, 1996) recognized that asset

returns in a properly functioning market should be priced by accurate models of stochas-

tic intertemporal marginal rates of transformation equally as well as by accurate models

of stochastic intertemporal marginal rates of substitution. The di¤erences between the

consumption-based and production-based approaches re�ect the di¤erences that naturally

arise from looking at an equilibrium relationship from two di¤erent sides of the market, that

of the intertemporal consumer and that of the intertemporal producer.

Our approach di¤ers from Cochrane (1991, 1996) and much of the closely related empir-

ical literature on real-business cycles (e.g. Jermann (1998), Tallarini (2000)) in that we do

not ground our analysis in a stochastic production function representation of the technology.

Instead, we rely on a cost function that is dual to a more general primal representation of

the technology than the stochastic production function� the state-contingent input corre-

spondence. This approach allows us to identify the stochastic discount factor with the �rm�s

current period marginal cost of future stochastic production. This has several advantages.

Most importantly, unlike the stochastic production function approach, it does not arbitrarily

impose a zero marginal rate of transformation between production in di¤erent states of Na-

ture upon the production technology, and it allows us to estimate a stochastic discount factor

without making any restrictive assumptions on the subspace spanned by �nancial markets.

The testable component of what we refer to as the cost-based approach is a moment

2



restriction on the joint stochastic process of asset returns, output, investment, existing capital

stock, and measures of input and output prices of the general form

E
h
m (~z; i; k; w; p) ~R

i
= 1;

where ~z denotes stochastic output, i denotes investment, k denotes the existing capital stock,

w denotes input prices, and p denotes output price.

1 State-Contingent Technologies and the Asset Struc-

ture

To preserve mathematical simplicity, we develop the basic equilibrium pricing relationship

in a two-period setting with a single stochastic output. Generalizing results to the case of

multiple outputs and multiple time periods is straightforward.

Firms face a stochastic environment in a two-period setting. The current period, 0; is

certain, but the future period, 1; is uncertain. Uncertainty is resolved by �Nature�making

a choice from a state space 
: Each element of 
 is referred to as a state of nature. The

random variable space is <
; which we endow with the usual expectations inner product and

norm (Luenberger, 1969).

The only assumption on �rms�preferences is that they are strictly increasing in period 0

consumption and nondecreasing in period 1 stochastic income.

The �rm�s stochastic production technology is represented by a single-product, state-

contingent continuous input correspondence that exhibits internal costs of adjustment asso-

ciated with current period investment. Let x 2 <N+ be a vector of variable inputs (e.g. labor

and nonlabor services) committed prior to the resolution of uncertainty (period 0), i 2 < be

the level of current period investment in the capital good, k the existing (period 0) stock of

capital, and ~z 2 <
+ the stochastic output chosen in period 0 but realized in period 1. The

period 1 price of the state-contingent output is taken as nonstochastic and denoted by p: 1

The current period price of the investment good is normalized to one.

1In the empirical analysis, nothing of substance changes by taking the period 1 price of the output to be

stochastic.
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The continuous input correspondence, X : <
+ � <2 ! <N+ , maps stochastic output,

capital and investment into variable input sets:

X (~z;k; i) = fx 2 <N+ : x can produce ~z given investment level i and capital stock kg:

Intuitively, X (~z;k; i) is associated with all of the variable-input combinations on or above

the �rm�s production isoquant for ~z for a given level of current-period investment and capital

stock. In addition to continuity of X; the only technical restriction that we require is that

X (~z; k; i) satis�es free disposability of state-contingent output, or, more precisely ~z0 � ~z )

X (~z; k; i) � X(~z0; k; i):

Period 0 input prices are denoted by w 2<N+ and are non-stochastic. The (period 0)

production cost function, c : <N++ �<
+ �<2 ! <+, is de�ned

c(w; ~z;k; i) = minxfwx : x 2 X (~z; k; i)g w 2 <N+

if X (~z; k; i) 6= ? and 1 otherwise. c(w; ~z;k; i) is continuous and nondecreasing in ~z over

the region in which it is �nite, and it is nondecreasing and superlinear in w:

c(w; ~z;k; i) is also subject to internal costs of adjustment. The internal adjustment cost

model usually holds that current period investment, by diverting resources away from pro-

ductive activities, raises current period cost. It is also typically presumed that cost is convex

in stochastic output and that higher levels of current period capital stock lower current pe-

riod costs of output. We do not need any of these restrictions to develop our representation

of the pricing kernel, and thus in the interest of generality, we do not impose them. However,

as we show below, our empirical results support these properties for our data set.

Financial markets are frictionless, and the ex ante �nancial security payo¤s are given by

the 
 � J matrix A. The stochastic payout on the jth �nancial asset is denoted ~Aj 2 <
;

and its period 0 price is denoted vj: The �rm�s portfolio vector, corresponding to the period

0 purchases of the �nancial assets, is denoted h 2 <J : Denote the subspace spanned by A

as M � <
; where

M =
�
~y : ~y = Ah;h 2 <J

	
:

Denote the jth vector of state-contingent returns by ~Rj =
~Aj
vj
, and the state-contingent

returns matrix by R =
h
~R1; :::; ~RJ

i
:
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2 An Equilibrium Relationship

Given any equilibrium level of current period investment and period 1 stochastic income,

denoted by ~y 2 <
; from production and �nancial investments, �rms must solve:

C (w;v;p;~y;i) = min
h;z
fc(w; ~z;k; i) + v0h : Ah+p~z � ~yg : (2)

If �rms did not behave in this manner, there would exist unexploited arbitrage opportunities

for them to raise period 0 consumption expenditures (by lowering costs) while maintain-

ing stochastic period 1 income (and thus future stochastic consumption). This cannot be

consistent with any reasonable notion of equilibrium.

In what follows, it eases exposition if we assume that c(w; ~z;k; i) is Gateaux di¤erentiable

in ~z:2 De�ne the directional derivative of c(w; ~z;k; i) in the direction ~n 2 <
 by

c0(w; ~z;k; i; ~n) = lim
t#0

�
c(w; ~z + t~n;k; i)� c(w; ~z;k; i)

t

�
:

Notice that the directional derivative, c0(w; z;k; i;n); is positively linearly homogeneous in

n: c(w; z;k; i) is said to admit a Gateaux derivative, denoted @c(w; ~z;k; i); if this limit exists

for all ~n 2 <
 and

c0(w; ~z;k; i; ~n) = E [@c(w; ~z;k; i)~n] ;

for all ~n where E [~x~y] denotes the expectations inner product. Intuitively, the Gateaux

derivative is the marginal current period cost of changing stochastic period 1 production.

If c(w; ~z;k; i) is Gateaux di¤erentiable, necessary conditions for an interior solution to

(2) include (Clarke, 1983):

c0(w; ~z;k; i;
~Aj
p
) = E

�
@c(w; ~z;k; i)

p
~Aj

�
= vj (3)

for all j; or in returns notation

c0(w; ~z;k; i;
~Rj
p
) = E

�
@c(w; ~z;k; i)

p
~Rj

�
= 1; j = 1; :::; J: (4)

2Gateaux di¤erentiability assures uniqueness of a pricing kernel. It is easy to verify following the argu-

ments in Chambers and Quiggin (2000) that c (w;z; k; i) need not be Gateaux di¤erentiable for arbitrary

technologies. In fact, as we illustrate below, it is never di¤erentiable at e¢ cient production points for the

popular stochastic production function technology. When the cost-structure is not di¤erentiable, the re-

quirement of Gateaux di¤erentiability can be relaxed to the notion of di¤erentiability introduced by Clarke

(1983) with little true change in the argument.
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This equilibrium condition is easily explained. Suppose that starting from production

position ~z; the �rm replicates, via its stochastic production technology, t ~Aj of the jth asset.

The resulting marginal cost is

c(w; ~z + t
~Aj
p
;k; i)� c(w; ~z;k; i):

In the limit, this marginal cost equals c0(w; ~z;k; i;
~Aj
p
): Now suppose further that vj >

c0(w; ~z;k; i;
~Aj
p
): The �rm then could pro�tably sell o¤ some of its holding of the jth as-

set while replacing it with a like amount produced using its stochastic technology. (If it has

no holding, it could pro�tably sell what it has produced.) Either way, current period cost is

lowered, and the �rm can achieve �rm an unambiguously higher current period consumption.

There is thus an arbitrage available between the technology and �nancial markets that cannot

be consistent with equilibrium behavior. On the other hand, if vj < c0(w; ~z;k; i;
~Aj
p
), the �rm

could alter its period 1 stochastic production by
~Aj
p
and pro�tably replace it by purchasing the

jth asset in the current period.3 Thus, for smooth technologies, unless vj = c0(w; ~z;k; i;
~Aj
p
)

holds for all j; there exist arbitrage opportunities between the physical technology and �-

nancial markets that the �rm can risklessly exploit to raise its current period consumption.

This cannot be consistent with rational behavior by the �rm.

Thus,

~m =
@c(w; ~z;k; i)

p
; (5)

represents an appropriate stochastic discount factor for the �rm of the same basic form as (1).

Before discussing this version of the stochastic discount factor further, it is important to make

several points about its derivation. This asset-price relationship is an entirely production-

based asset pricing model. Apart from monotonicity, it does not rely on any restrictions

on the �rm�s attitudes towards risk. Therefore, it is valid for any �rm with monotonic

preferences. The development does not require any restrictions on the subspace spanned by

the market assets. In particular, it does not require any of the following: complete markets,

3Here we rely on the fact that Gateaux di¤erentiability ensures that

c0
�
w;~z; k; i;

Aj
p

�
= �c0

�
w;~z; k; i;�Aj

p

�
:

More generally this need not be true.
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investment returns lie within the market span, M; or that the mean-variance frontier for M

be contained within the span of factors de�ned by production or investment opportunities.

The asset pricing relationship can be inferred solely from the �rm�s �rst-order conditions for

the removal of arbitrages between �nancial and production opportunities. And because it

arises from the �rm�s optimization behavior, it yields clear theoretical predictions.

3 Interpretation of the Stochastic Discount Factor

One way to examine the properties of the stochastic discount factor (5) is to compare it to

a stochastic discount factor derived from the consumption-based model. Figure 1 illustrates

the market span, M; as a ray through the origin of state-contingent income space, <
. The

pricing kernels, ~m; that satisfy

E
h
~m ~A
i
= v

for M are given by the hyperplane perpendicular to M labelled m in that �gure. The no-

arbitrage prices are the strictly positive elements of the hyperplane m. The consumption-

based approach to asset pricing isolates a particular element of m; the consumption-based

stochastic discount factor, by �nding a point of tangency (not drawn) between a hyperplane

parallel tom and the representative-consumer�s indi¤erence curve in state-contingent income

space.

The approach that we are advocating looks at the other side of the market. It isolates

a particular element of m by �nding a point of tangency between it and the representative

�rm�s isocost curve in state-contingent income space (as normalized by p): This is illustrated

by point A in the �gure. For clarity�s sake, we have drawn this isocost curve as though

c (w;~z; i; k) were quasi-convex in stochastic output. The assumption of quasi-convexity,

however, is not essential to the derivation of the equilibrium pricing relationship just as

the assumption of risk aversion is not essential to the derivation of the equilibrium pricing

relationship in the consumption-based approach.

Intuitively, therefore, our derivation of the pricing kernel says little more than that the

�rm should equate its marginal rate of substitution between state-contingent incomes to

its marginal rate of transformation of these incomes as a producer. Formally, however,
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the validity of (5) as a stochastic discount factor only requires that the �rm�s preferences are

decreasing in current period cost and increasing in future income. Its existence and properties

do not hinge on any assumption about the �rm�s risk attitudes. This latter point is essential

because (5) suggests a fundamentally di¤erent way of looking at pricing relationships than

the consumption-based approach.

As usual, by rewriting the equilibrium pricing relationship in terms of covariances and

means, we obtain for any payo¤ that

vj = E
h
~Aj

i
E [ ~m] + Cov

�
~m; ~Aj

�
:

The second term, Cov
�
~m; ~Aj

�
; is usually thought of as a risk adjustment. Intuitively, an

asset that covaries positively with the stochastic discount factor has its price raised by the

risk adjustment while an asset that covaries negatively with the stochastic discount factor

has its price lowered by the risk adjustment.

The usual intuition for the risk adjustment comes from the consumption-based model

where ~m is de�ned in terms of the marginal utility of stochastic period 1 consumption.

Assuming expected-utility preferences and risk aversion, this marginal utility covaries nega-

tively with period 1 consumption. Thus, the risk adjustment lowers an asset�s price if that

asset varies positively with period 1 consumption and raises its price if the asset varies neg-

atively with period 1 consumption. Risk-averse individuals are willing to pay a premium for

an assets that balance their consumption risk.

Di¤erent forces are at work for (5). The stochastic discount factor now depends upon

stochastic production levels, input prices, current period investment, the capital stock, and

implicitly the current state of technical knowledge. Assets that covary positively with the

stochastic discount factor still have their price raised by the risk adjustment. But now the

intuition and the theoretical predictions are di¤erent. Suppose that marginal cost, as one

typically expects, is increasing in stochastic output. Then assets that covary positively with

stochastic output have their prices raised by the risk adjustment, and assets that covary

negatively with stochastic output have their prices lowered. The explanation is that (5),

instead of evaluating the marginal utility of consumption, measures the marginal cost of

replicating assets via the production technology. Thus, assets that covary positively with
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this marginal replication cost should have their prices raised precisely because they are more

costly to replicate physically when output is high than assets that covary negatively with

the marginal replication cost. The risk adjustment now manifests a replication e¤ect rather

than a risk-averse consumer�s response to consumption risk.

We have argued in passing that the speci�cation of the technology in terms of gen-

eral input correspondences and cost structures has the threefold advantage of generality,

tractability and empirical �exibility over the more familiar stochastic production function

approach used in both the cost-of-adjustment investment and production-based asset pricing

literatures. This seems to be a good point at which to explain why.

Suppose that the production technology is modeled by a stochastic production function,

subject to adjustment costs, of the form

~z = F (k; i; ~") ;

where ~" 2 <
 may be interpreted as a random production shock or a random input. Here

the interpretation is that i and k are determined in period 0, and then Nature intervenes

by choosing a realization of ~" 2 <
 to determine ex post output in period 1: One approach

to generating a stochastic discount factor is to recognize that marginal changes in current

period investment de�ne a random variable of the form

~� = Fi (k; i; ~") :

Then following Cochrane (1991) so long as ~� 2 M , a mimicking portfolio for ~� can be

constructed, and its price forms the basis for a production-based model of asset pricing.

Unfortunately, as Chambers and Quiggin (1998, 2000) have shown, this speci�cation of

the technology su¤ers from an obvious technical shortcoming that appears to have been

largely overlooked in both the theoretical and empirical literatures. This shortcoming is

most clearly illustrated by assuming for the moment that 
 = f1; 2g and ~" = ("1; "2) : It

then follows immediately that

~z = (F (k; i; "1) ; F (k; i; "2)) ;

and

~� = (Fi (k; i; "1) ; Fi (k; i; "2)) :

9



Notice, in particular, that the �rst of these equalities says that for any given level of invest-

ment and the capital good, only one possible pair of state-contingent outputs can emerge. If

one were to illustrate this production technology in terms of a state-contingent product trans-

formation curve (with free disposability of outputs), one would obtain a right-angled product

transformation curve that is the mirror image of a Leontief indi¤erence set (Chambers and

Quiggin (1998, 2000)). There is, by assumption, no substitutability between state-contingent

outputs.4 Regardless of the dimension of 
; this remains true. Thus, the stochastic produc-

tion function cannot lead to a cost function representation that is Gateaux di¤erentiable at

technically e¢ cient points (more on this below). 5

The second equality leads to a similar conclusion in terms of the production perturbation.

For a given level of investment and capital, �rms can only arrange their investment activities

to incur a single pattern of marginal changes in future returns. When it is realized that the

most common speci�cation for the stochastic production function in the literature is of the

multiplicative form:

F (k; i; ~") = ~"f (k; i) ;

then the starkness of this assumption becomes even more apparent. Here the �rm faces

production shocks to which it cannot react in making its production choices. All it can do

is choose the magnitude of the production risk that it faces, much in the same fashion that

an individual producer, when faced with a single asset chooses the magnitude of the risk he

or she faces by choosing his holding of the asset.6

In particular, if it is assumed that ~� 2 M; it follows that ~" 2 M: Thus, the physical

production technology is e¤ectively redundant in the presence of �nancial markets. In other

words, the uncertainty of physical production plays no truly independent role in determining

the ultimate level of uncertainty that the economy faces. Or put another way, all production

risk can be modelled as though it arises in �nancial markets and not from real phenomena.

4Cochrane (1996, p.574) recognizes that the production function speci�cation that he chooses ensures

that "...there is nothing a producer can do to transform goods across states". (Italics in original.)
5Similarly, it does not lead to a distance or transformation function representation that is Gateaux

di¤erentiable at e¢ cient points (Chambers and Quiggin, 2000).
6It is on this basis that it is routinely argued that the problem of the �rm facing a stochastic technology

is isomorphic to the simple portfolio selection problem (Gollier, 2001).
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It is as though all of the uncertainty that consumers and producers face arise not from the

real side of the economy, but from the �nancial sector.

The fact that the stochastic production function representation leads to a situation where

the state-contingent transformation curve for the production technology exhibits zero substi-

tutability between state-contingent outputs also has important implications for �rm behav-

ior. As pointed out above, in geometric terms, this is manifested by a right-angled kinked

product transformation curve, whose supporting hyperplanes span <
+: Thus, any explana-

tory power that can emerge from a production-based asset pricing model or the closely related

q�theory of investment under this speci�cation must emerge solely from the elimination of

intertemporal arbitrage opportunities as opposed to removing (period 1) intratemporal ar-

bitrage opportunities made available to the �rm by the simultaneous existence of �nancial

markets and stochastic physical technologies.

The consequences of this di¢ culty may perhaps be best grasped by considering its mirror

re�ection in consumption-based asset pricing models. There the stochastic discount factor

is given by the stochastic marginal rate of substitution between consumption in di¤erent

states of Nature divided by the consumer�s subjective discount rate. The assumption of a

zero state-contingent marginal rate of transformation would be mirrored in a zero marginal

rate of substitution between period 1 consumption in di¤erent states of Nature. The par-

allel assumption is that investors are perfectly risk averse. Asset pricing would have to be

explained entirely in terms of discounting sure returns back to the current period because

all investors would rationally strive for portfolios that yielded a sure return.

4 An Empirical Model

To illustrate (5), we attempt to estimate it using annual U.S. macroeconomic data on aggre-

gate production (Gross Domestic Product) and its price, aggregate investment (Gross Private

Domestic Investment), unit labor cost, unit nonlabor cost, stock price returns (returns on

the Standard & Poor�s 500), and returns on commercial paper for the period 1929-1995.7

7The Standard and Poor�s returns data and the return on commercial paper were drawn from

http://kuznets.fas.harvard.edu/~campbell/data.htm. They correspond to the data that underlie some of

11



We assume that aggregate production, as measured by Gross Domestic Product (which we

take to be stochastic), can be modelled as though there exists a representative producer who

rationally removes any arbitrage opportunities between the physical technology and �nancial

markets.

To implement the theoretical model empirically, we must �rst specify an econometrically

estimable form for the pricing kernel. This requires speci�cation of a cost function. Specifying

a cost function for a stochastic production technology presents a number of di¢ culties not

present in specifying estimable versions of nonstochastic technologies. The cost function,

c (w;~z; i; k) ; and its dual input set, X (~z; i; k) ; both depend on the random variable ~z 2 <
:

As with all random variables, ~z is only incompletely observed because one typically only has

observations on one ex post realization of any random variable for any observation point.

The usual tactic pursued in such situations is to make an identi�cation assumption that

permits estimation of a nonstochastic portion of the technology, and then use that estimated

knowledge to construct an approximation of the underlying distribution. The familiar sto-

chastic production function with variable inputs and a multiplicative error structure illus-

trates (Cochrane, 1991; Jermann, 1998; Tallarini, 2000). There it is typically assumed that

stochastic output is related to inputs by a relationship of the form

~z = f (x;i; k) ~";

where ~" is now a positive random variable with E [~"] = 1; and f (x;i; k) is a suitably non-

stochastic parametric representation of expected output. Once a stochastic structure for ~"

is speci�ed, it can be treated as an error term in the estimation of f (x;i; k). This permits

the estimation of the stochastic technology using only observations on the ex post output

realization.

But, as discussed above, it brings a an economic cost in loss of generality because it

assumes that the underlying technology admits zero substitutability between outputs for

di¤erent realizations of ~": It is precisely this assumption (zero substitutability) that allows

the empirical analysis in Campbell (2003). The data on the macroeconomic variables (real gross domestic

product (gdp), unit labor cost, unit nonlabor cost, and gross private domestic investment) are from the US

National Income Product Account website.
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one to infer the entire output distribution from a single ex post observed output given

knowledge of f (x;i; k) : The case where 
 is �nite and given by


 = f1; 2; ::; Sg ;

with

~" = f"1; "2; ::; "Sg ;

and

~z = ff (x;i; k) "1; f (x;i; k) "2; ::; f (x;i; k) "Sg

= fz1; z2; :::; zSg

illustrates. Once a single zi is known, then the remaining elements of ~z can be determined

via

zs =
zi
"i
"s:

But as Chambers and Quiggin (1998, 2000) show:

c (w;~z; i; k) = max
1;2;:::;S

�
min
x

�
w0x :f (x;i; k) � zs

"s

��
:

for this technology. This cost structure is nondi¤erentiable at economically e¢ cient points.

The approach taken in this paper is to assume at time t a quasi-homothetic cost function

of the form:

c (wt;~zt+1; kt; it; t) = � (wt; it; kt) +  (wt)

�
a+ c

it
kt

�
E [~zt+1] +  (wt)

b

2
E
�
~z2t+1

�
;

where � (wt; it; kt) is nondecreasing and superlinear in wt, and

 (wt) = 100
�
w

1
2
ltw

1
2
nt

�
;

with wlt denoting unit labor cost and wnt unit nonlabor cost. 8

Empirically, kt is constructed recursively using data on it by assuming an annual depre-

ciation of .04 as

kt+1 � kt = it � :04kt;
8By convention, wlt and wnt are taken to be the unit costs reported for the same year as zt+1 and pt+1:
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with initial period (1929) capital stock arbitrarily normalized to one.

This speci�cation yields a linear stochastic discount factor at time t for period t+1 that

is given by:

~mt =
@c(wt; ~zt+1;kt; it; t)

pt+1
=
 (wt)

pt+1

�
a+ c

it
kt
+ b~zt+1

�
:

Taking expectations conditional on the information available at time t yields for random

asset return, ~Rt+1;

 (wt)Et

"
a
~Rt+1
pt+1

+ c
it
kt

~Rt+1
pt+1

+ b~zt+1
~Rt+1
pt+1

#
= 1: (6)

The law of iterated expectations then implies the following unconditional expectation

ht � E
"
 (wt)

"
a
~Rt+1
pt+1

+ c
it
kt

~Rt+1
pt+1

+ b~zt+1
~Rt+1
pt+1

#
� 1
#
= 0; (7)

for any stochastic return.

Our estimation procedure (see below) is based upon the generalized method of moments

(GMM). Thus, (7) for a single asset does not contain enough sample information to permit

identi�cation of all three parameters of the pricing kernel. To permit identi�cation we

pursue the strategy of introducing instrumental variables into (6) using variables that can

be plausibly taken as known at time t (and thus statistically predetermined), which we

denote by vt; to generate additional unconditional expectations of the form

gt � E
"
vt (wt)

"
a
~Rt+1
pt+1

+ c
it
kt

~Rt+1
pt+1

+ b~zt+1
~Rt+1
pt+1

#
� vt

#
= 0: (8)

In estimation, we used three sets of instruments. The �rst set of instruments corresponds

to (wlt; wnt) and yields an exactly identi�ed system in the single return estimation results

presented below. The second set of instruments corresponds to (wlt; wnt;Rt) where Rt is the

two-vector containing the observed return on the S&P 500 and commercial paper, and the

third set corresponds to (wlt; wnt;Rt;Rt�1) :

A few further comments are in order. Most importantly, this cost structure (like the

expected-utility functional) is additively separable across states of Nature. This facilitates

estimation because it allows us to replace the random variable ~zt by its ex post realization,

zt; in the construction of the sample analogues of (7) and (8) that form the basis of the

GMM estimation procedure.
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But it is also places restrictions on the underlying technology. It implies, for example,

that the marginal cost associated with a small change in the sth realization of the random

variable ~z; z (s) ; s 2 
 is

 (wt)

�
a+ c

it
kt
+ bzt+1 (s)

�
:

This marginal cost is independent of any other potential realization z (k) ; k 6= s: Literally,

this implies that the marginal cost of preparing output for one state of Nature is independent

of the output levels chosen for the other states of Nature.9 Thus, where the stochastic

production function speci�cation assumes that �rms cannot adjust to production risks in

di¤erent states at all, this speci�cation assumes that �rms have an almost perfect ability (at

some cost) to adjust to these risks.

Second, the marginal rate of transformation between output realizations z (s) and z (k)

is

�
 (wt)

h
a+ c it

kt
+ bzt+1 (s)

i
 (wt)

h
a+ c it

kt
+ bzt+1 (k)

i :
This marginal rate of transformation is not parametrically set to zero for e¢ cient outcomes,

as it would be for a stochastic production function speci�cation. And because it is dependent

upon the levels at which the di¤erent output realizations are chosen, it is not parametrically

set to a constant. But, it is symmetric across states of Nature.

Finally, although we notationally model the cost function as dependent upon t; c (wt;~zt+1; kt; it; t) ;

the actual speci�cation is not directly dependent upon the time period, although it of course

depends upon it indirectly through its dependence on investment and the capital stock. This

implies, for example, that if the producer chose the same stochastic output, the same invest-

ment and faced the same capital stock and input prices, he or she would incur the same cost

in 1995 as in 1929. This is implausible.

There are a number of di¤erent ways to incorporate the phenomenon of technical change

into cost functions suitable for estimation using time-series data. The most common, of

course, is to specify the technology as depending directly upon a time trend term. While

9Chambers and Quiggin (2000) show that this speci�cation corresponds to a variable production technol-

ogy that has what they refer to as state-allocable inputs. In short, this requires that inputs, such as labor

and materials, can be allocated to state-speci�c tasks, which do not overlap across states of Nature.
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this may be a tractable alternative for relatively short time periods, for longer series, it is

implausible to presume that such a time trend term is stationary.

Here we tackle the problem through our treatment of the output variable. In particular,

instead of measuring the random variable ~zt+1 in terms of levels, we measure it in terms

of year-to-year changes. Thus, the actual assumption is that the cost structure at time is

conditioned upon the ex post realization of output at time t; zt; as follows:

c (wt;~zt+1; kt; it; t) = � (wt; ii; kt) +  (wt)

�
a+ c

it
kt

�
E [~zt+1 � zt] +  (wt)

�
b

2
E [~zt+1 � zt]2

�
:

Such a cost structure can be rationalized by assuming a particularly simple (and tractable)

form of learning by doing over time.

5 Results and Discussion

In Table 1, we report estimation results for the parameters of the pricing kernel. There are

three separate set of estimates for the parameters: those obtained by estimating the pricing

kernel with di¤erent sets of instruments using only data on the S&P 500 returns; those

obtained by estimating the pricing kernel with di¤erent sets of instruments using only data

on commercial paper returns; and results obtained by estimating the pricing kernel using

data on commercial paper and S&P 500 returns jointly.

These estimates were obtained using iterated GMM with an optimal weighting structure

for the respective moment conditions. Speci�cally, the parameters of the pricing kernel were

estimated by minimizing a weighted combination of the sample moments analogous to (7)

and (8). Letting the sample moments of (7) and (8) be denoted by, respectively, gT and hT ;

the weighted combination is given by

JT = [gT ; hT ]�
�1[gT ; hT ]

0;

where � is the spectral density matrix for the implied pricing errors. In estimation, � was

estimated using the Newey-West procedure with lag length set to 4.10

10All estimation was done in a Matlab framework using the GMM program library developed and main-

tained by M. T. Cli¤ of Purdue University.
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In viewing these results, several observations are apparent. First, although there are

naturally di¤erences depending on the number of instruments included (and thus included

moment conditions), the estimated parameters are quite similar across all estimated versions

of the model. And in most instances, the estimated parameters seem to be highly signi�cant

suggesting that de�ated nonlabor and labor unit cost, output, and the investment-capital

ratio all can play an important role in pricing these assets.. The estimates for a run from

about .65 to approximately 1.10 and can be judged signicantly di¤erent from zero at tradi-

tional con�dence levels in all but two instances. The estimates for b range from .18 to .37 and

are statistically di¤erent from zero in all but one instance at traditional con�dence levels,

and in that one instance it would be judged signi�cantly di¤erent from zero at roughly the

.07 level. The estimates for c range from 4.07 to 7.17 and can also be judged signi�cantly

di¤erent from zero in all but two instances.

Besides giving us information on the role that
�
w
p
; z; i

k

�
play in pricing these assets, the

estimated parameters provide information on the underlying cost structure.11 The parame-

ters a and b, respectively, measure the e¤ect that changes in the �rst and second moments of

~z have on cost, while c measures the e¤ect that increasing current period investment (as well

as current period capital holdings) have on current period costs. The estimates of c are all

positive which implies that increasing current period investment raises current period costs.

This is the usual maintained hypothesis in the internal cost of adjustment literature. It can

be explained intuitively by noting that deploying investment draws away variable inputs that

could otherwise be used to produce period 1 output. So long as those diverted inputs exhibit

free disposability (have positive marginal products), this diversion will raise the variable cost

of producing output. In essence, purchasing and installing capital diverts one�s attentions

away from other productive activities.

The estimates of a and b suggest that independent increases in either of the �rst two

moments of ~z raises the costs of producing aggregate output. The �nding that increasing

the �rst moment of output increases costs is not at all surprising. This just re�ects the usual

economic notion of positive marginal cost. The �nding that the increases in the second

moment tend to raise cost, however, may be less intuitively obvious. It implies, for example,

11To obtain a complete picture, one would have to obtain estimates of � (w; i; k) :
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that increasing the variance of ~z increases cost, while lowering variance decreases cost. At an

intuitive level, one might believe that reducing the variation of a stochastic output is costly

because �rms would be required to devote scarce resources to measures that prevent Nature�s

actions from having an adverse impact on production. Our empirical result suggests just the

opposite.

There are a number of explanations. One is that aggregate production may not be

inherently risky in the sense of Chambers and Quiggin (2000). If true, then �rms tolerate

riskiness in their production portfolio as a way of self insuring against the stochastic demand

variations that they face in their product markets. Then, the positive (and highly signi�cant)

sign for b re�ects the cost of dealing with stochastic variation in product markets. More

generally, the sign of b will be positive if, in an appropriate sense, demand uncertainty is a

more important source of variation than the inherent riskiness of production.

Second, and perhaps more important empirically, b also measure the presence or absence

of economies of size for a given capital structure. When interpreted as a "size e¤ect", the

estimates of b imply a convex cost structure so that all state-contingent marginal costs are

increasing in output. This is exactly what one expects from most production technologies. In

fact, it is routinely imposed in most stochastic production function speci�cations. Standard

intuition from the theory of the �rm would suggest that size e¤ects can lead to a �replication

e¤ect�that leads to a positive adjustment in the price of assets that covary positively with

stochastic production. Firms �nd it more costly to replicate those assets precisely when

production is higher.

Ultimately, it would be desirous to disentangle the "size" and "variation" e¤ects empir-

ically. However, the convolution of "size" and "variation" e¤ects is a cost imposed by a

cost function that is additively separable across states of Nature. That speci�cation was

chosen for several reasons. Most importantly, it leads to a pricing kernel that can be ap-

proximated in moment terms by interactions between ex post observations on the random

variables, ~z and ~R: But using sample moments to approximate the true moments without

direct observations on unrealized components of ~z and ~R potentially confounds "size" and

"variation" e¤ects. The problem is similar to that of identifying technical change and size

e¤ects using only time-series data for nonstochastic technologies. To sort the "size" e¤ect
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from the "variation" e¤ect, either a richer data set is needed, or even further structure must

be imposed. We leave both problems to future research.

The theory requires that (7) holds exactly. Theory also suggests that (8) holds exactly

for each instrument so long as the instrument can be viewed as known at the time of making

the production and investment decisions. In the exactly identi�ed case, the GMM estima-

tion procedure, by de�nition, ensures that parameter estimates are chosen so that (7) holds

exactly for the corresponding sample moment. In the cases where the parameters of the

pricing kernel are overidenti�ed, a straightforward test of (7) is o¤ered by comparing the

mean sample forecast error of the estimated pricing kernel to its estimated standard devi-

ation. A test of the joint exactness of (7) and the relevant versions of (8) is o¤ered by a

test of overidentifying restrictions based on computed values of JT . As is well-known, TJT is

distributed as �2 with degrees of freedom equal to the number of moments less the number

of estimated parameters (Hansen, 1982; Hansen and Singleton, 1982; Hamilton, 1994).

Computed values of the sample mean forecast error, its standard error, the relevant

J�statistic, its probability value, and the relevant degrees of freedom are reported in Table

2.

In all the single-asset estimation results, the sample mean forecast error is not signi�cantly

di¤erent from zero at the .05 level. Thus, there is signi�cant statistical evidence in support

of the exactness of (7). The calculated values of the J statistics that were obtained in the

single-asset estimation results also provide evidence in favor of the exactness of both (7 )

and (8).

Turning to the results from estimating the pricing kernel parameters jointly using data

on S&P 500 returns and returns on commercial paper, the mean sample forecast error for

S&P returns is positive and signi�cantly di¤erent from zero in both instances. On the other

hand, the mean sample forecast error for commercial paper is not signi�cantly di¤erent from

zero in either instance. Thus, the pricing kernel jointly estimated using both returns series

tends to overpredict the return on the S&P 500 portfolio, while it seems to do well in pricing

the return on commercial paper. Given the tendency to overpredict the S&P 500 returns, it

is not surprising that the evidence in favor of the joint exactness of both version of (7) and

the associated instrument-moment conditions is much weaker when the system is estimated
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jointly.

Although the empirical pricing kernel has been deduced from a cost function speci�cation,

as executed, it corresponds to a stochastic discount factor that it is linear in a set of macro-

economic variables. This speci�cation highlights the potential empirical similarity of the

approach that we are advocating to existing asset pricing models based on macroeconomic

factors or �state�variables (e.g. Chen, Roll, and Ross, 1986; Cochrane, 1996). Letting

�Xt=
 (wt)

pt+1

�
a+ c

it
kt
+ b~zt+1

�
;

our empirical speci�cation implies for any return that

Et

h
~Rt

i
=

1

�Et [Xt]
� Cov

�
�Xt; ~Rt

�
:

Thus, our model can be converted to a form that is identical to �factor pricing�models that

take as factors or �state�variables the macroeconomic variables that are in Xt (Ross, 1978).

These variables measure innovations in aggregate production, in�ation and wage levels, and

investment.

This observation merits some further discussion to distinguish the two approaches. Our

"state variables" or factors are derived from and motivated by economic theory. Moreover,

although applied at an aggregate level, the model being proposed here is a �rm-level theory.

It does not require any formal assumptions on the space of assets. It makes clear theoretical

predictions at the micro level, and it is amenable to testing at that level. Thus, it is not in-

herently a macroeconomic model of asset pricing. In particular, the theory applies regardless

of whether our "factors" can span asset space either exactly or approximately. Instead, our

admittedly one-sided explanation of asset price behavior is grounded in the marginal cost

of replicating �nancial assets by physical technologies and in the elimination of arbitrage

opportunites between the �rm�s production opportunities and �nancial markets. It makes

clear predictions, grounded in theory, about the relationship between production variables

and asset prices.

It is also possible to interpret our empirical model as an approximate or reduced-form

consumption-based model where general-equilibrium considerations and the production side

of the economy have been used to determine proxies for or to "solve out" aggregate con-

sumption. Thus, one might view our model as arising from a consumption-based pricing
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model where aggregate consumption is speci�ed to be of the form C (~z; i; k;w) ; and the re-

sulting pricing kernel is then properly linearized. Notice, however, that such a reduced-form

approach can lead to fundamentally di¤erent predictions than the ones that arise from our

model. Suppose, in fact, that one takes a consumption-based approach, but that one models

consumption as C (~z; i; k;w) : Presumably, consumption is positively related to income in

the form of GDP or GNP. Consumption and production would then presumably covary pos-

itively. The implication for asset pricing would be that if consumers are risk averse, then the

price of assets that covary positively with production (and thus consumption) should receive

a negative risk adjustment. This is the opposite of what the replication e¤ect for convex

technologies predicts in our model. The fact that our predictions do not coincide with the

predictions that emerge from a reduced-form approach neither contradicts or invalidates the

reduced-form approach. Rather, it re�ects the fact that (at least) two sets of market forces

are at play in determining equilibrium asset prices. It also highlights the role that economic

theory can play in disentangling these competing forces in both empirical and theoretical

work.

6 Conclusion

A cost-based approach to asset-pricing equilibrium relationships is developed. It is shown

that a cost function subject to internal costs of adjustment induces a stochastic discount

factor (pricing kernel) that is a function of random output, input and output prices, existing

capital stock, and investment. The only assumption on �rm preferences is that they are

increasing in current period consumption and future stochastic consumption. This su¢ ces

to ensure that the �rm will always strive to remove any opportunities for arbitrage between

existing �nancial markets and its production technology. This ensures that the �rm will

always act to minimize current period cost of providing future consumption, and it is the

�rst-order conditions for this cost minimization problem that generate the stochastic discount

factor. Neither the theory or the empirical application requires any further restrictions

on �rm preferences or on the asset space. Where existing production-based asset-pricing

models determine state-claim prices by modelling the stochastic intertemporal marginal rate
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of transformation, the cost-based approach is dual in nature and determines state-claim prices

as the current-period marginal cost of increasing future stochastic output. As an illustration,

a cost-based pricing kernel is estimated using annual time-series data on macroeconomic

variables and returns data for the S&P 500 and commercial paper.
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Table 1: Estimation Results
Instruments

a t-stat. b t-stat c t.stat

S&P

wt .76045 1.58 .197681 3.05 7.176833 1.84

wt;Rt 1.016918 4.57 .266946 5.24 4.356948 2.83

wt;Rt;Rt�1 .99578 6.47 .184143 4.70 5.253640 4.01

Comm. Paper

wt .651918 .64 .370929 1.84 6.859074 1.13

wt;Rt 1.06614 3.41 .268319 3.20 5.171290 2.25

wt;Rt;Rt�1 1.108862 5.29 .188931 4.94 5.847707 3.81

System

wt 1.069422 2.61 .353752 6.60 4.079130 1.43

wt;Rt 1.028659 4.77 .317309 8.28 4.699451 3.19
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Table 2: Pricing Tests

Asset Instruments Forecast Error s.e. TJT p-value df

S&P wt;Rt �.0056 .0141 .6053 .7388 2

S&P wt;Rt;Rt�1 -.018381 .01098 3.5804 .4658 4

Comm. Pap. wt;Rt .028166 .035378 1.7210 .4229 2

Comm. Pap wt;Rt;Rt�1 .014568 .013813 3.1937 .5259 4

System Results

S&P wt .048451 .017015

Comm. Pap wt -.006469 .024602

10.4974 .0148 3

S&P wt;Rt .053293 .023317

Comm. Pap. wt;Rt .000444 .036144

15.2608 .0328 7
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Figure 1: The Cost-based pricing kernel
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