
 
R

es
ea

rc
h 

su
pp

or
te

d 
by

 a
n 

A
us

tra
lia

n 
R

es
ea

rc
h 

C
ou

nc
il 

Fe
de

ra
tio

n 
Fe

llo
w

sh
ip

 
ht

tp
://

w
w

w
.a

rc
.g

ov
.a

u/
gr

an
t_

pr
og

ra
m

s/
di

sc
ov

er
y_

fe
de

ra
tio

n.
ht

m
 

 
 

Consistent Bayesian updating with 
unconsidered propositions 

 
Simon Grant 

Rice University 

 
and 

 
John Quiggin 

Australian Research Council Federation Fellow, University of Queensland 
 

 
 
 

 
Risk & Sustainable Management Group 

 

 

Schools of Economics and Political Science 
University of Queensland 

Brisbane, 4072 
rsmg@uq.edu.au 

http://www.uq.edu.au/economics/rsmg 

 

Risk & Uncertainty Program Working Paper: R05#4 



Consistent Bayesian updating with
unconsidered propositions

John Quiggin and Simon Grant

Paper presented at the 23rd Australian Economic Theory
Workshop, Auckland University, Auckland, 23-24 February

2005.



Abstract

In this paper, we employ the propositional approach developed by Grant
and Quiggin (2004) and consider the properties of Bayesian updating in the
presence of unconsidered propositions.



1 Introduction

Bayesian decision theory and its generalizations provide a powerful set of
tools for analyzing problems involving state-contingent uncertainty. In prob-
lems of this class, decision-makers begin with a complete speci�cation of
uncertainty in terms of a state space (a set of possible states of the world).
The ultimate problem is choose between acts, represented as mappings from
a the state space to a set of possible outcomes. In many applications, there is
an intermediate stage in which the decision-maker may obtain information in
the form of a signal about the state of the world, represented by a re�nement
of the state space. That is, any possible value of the signal means that the
true state of the world must lie in some subset of the state space.
In the standard Bayesian model, the decision-maker is endowed with a

prior probability distribution over the states of the world. The standard rules
of probability enable the derivation of a probability for any given event, and
a probability distribution for any random variable. Given the observation of
a signal, Bayesian updating involves the use of conditional probabilities to
derive a posterior distribution.
It has been widely recognised since the work of Ellsberg (1961) that

decision-makers do not always think in terms of well-de�ned probabilities.
Rather, some events may be regarded as being, in some sense, ambiguous.
A wide range of de�nitions of ambiguity and proposals for modelling am-
biguous preferences have been put forward. The most in�uential has been
the multiple priors approach of Gilboa and Schmeidler (1989, 1994). In this
approach, uncertainty is represented by a convex set of probability distribu-
tions. Ambiguity-averse individuals choose to evaluate acts on the basis of
the least favorable probability distribution (the maxmin EU model) but a
range of other decision criteria are possible.
It is possible to apply Bayesian updating to multiple priors in the ob-

vious fashion, by deriving a posterior distribution for each element of the
set However this approach raises a number of issues. First, it is possible in
some circumstances to observe a signal that has probability zero for some
prior distributions under consideration (this cannot occur in the standard
Bayesian setting). More generally, as Halpern notes (2003, p84) an observed
signal will, in general be more probable under some priors than others, and is
therefore informative about the weight that should be placed on alternative
priors. The procedure of updating priors separately makes no use of this
information.
A more fundamental di¢ culty with state-contingent models of decision-

making under uncertainty is that decision-makers do not possess a complete
state-contingent description of the uncertainty they face. Life is full of sur-
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prises, unconsidered possibilities and so on. A number of recent studies, no-
tably those of Modica & Rustichini (1999), Dekel, Lipman and Rusticchini
(2001), Halpern (2001), Li (2003) and Heifetz, Meier & Schipper (2004) have
attempted to model these problems.
In this paper, we employ the propositional approach developed by Grant

and Quiggin (2004) and consider the properties of Bayesian updating in the
presence of unconsidered propositions. The key idea is to take the prior distri-
bution over a set of propositions under consideration (which is an exogenous
given in the standard Bayesian model) as the conditional distribution de-
rived from a probability distribution over a complete state space, which is
not accessible to the decisionmaker. We then consider updating in the light of
new information. Consistency requires that the usual Bayesian posterior over
the considered propositions be the same as the prior that would be derived
from the updated probability distribution over the complete space. We show
that consistency is equivalent to an independence property, which justi�es
treating the considered propositions in isolation.
Next we consider the multiple priors model. In our approach, multi-

ple priors are the conditional distributions derived from di¤erent implicit
assumptions about unconsidered propositions. For consistent updating of
multiple priors, we require not only that the independence property should
hold for each prior, but that observations on considered propositions should
not be informative with respect to those priors.
These are stringent conditions. However, we show by example, that in

many of the standard situations in which Bayesian reasoning is applied, these
conditions are reasonable, at least in the sense that they are implicit in
standard approaches to such problems.

2 Setup

We consider a single individual decision-maker, denoted i; making choices
over time, in a situation of uncertainty regarding the state of nature, and an
incomplete description of the set of states of nature. To describe the individ-
ual�s representation of the world, it is necessary to embed this representation
in a more complete description.

2.1 Representation

Let the set of states of the world be 
: We focus on the representation


 = 2N
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where N = f1; 2; ::::n; ::::g is supposed to be a �nite or countably in�nite set,
indexing a family of nodes. Each node represents either an act of nature or
a decision by individual i, and is associated with a speci�c time t (n) ; and
an elementary proposition pn.
Each elementary proposition pn is a statement such as �The winner of the

2008 US Presidential election is Hillary Clinton�or �Individual i votes for the
Republican candidate in 2008�. The negation of pn is denoted by :pn:
At time t (n) ; the proposition takes the truth value vn, which will be

denoted 1 (True) or�1 (False). The set of time periods is a �nite or countably
in�nite set of the form T = 0; 1, .... .1Without loss of generality, we will
assume that the elements of N are ordered so that n > n0 ) t (n) � t (n0) :
Conversely, we may denote by N (t) the subset N � N = fn : t (n) = tg :
An exhaustive description of the state of the world, including the decisions

made by individual i, consists of an evaluation of each of the elementary
propositions pn; n 2 N: From the viewpoint of a fully informed observer, any
state of the world can therefore be described by a real number ! 2 
 �
[0; 1] 2, given by

! =
X
n2N

2�(n+1) (vn + 1) :

An elementary proposition pn is true in state ! if and only if !n = 1,
where !n 2 f0; 1g is the nth element in the binary expansion of !. Hence,
corresponding to any elementary proposition pn is an event

Epn = f! : !n = 1g

3 Propositions, histories and events

Now consider the perspective of an external observer at time t, with full
knowledge of the state space 
 and of the history up to time t; given by the
values vn : for Nt = fn : t (n) � tg : The history at time t may be numerically
represented by

h (t) =
X
n2Nt

2�(n+1) (vn + 1) :

The history h (t) may be viewed in three distinct, but equivalent ways.
First, as the name implies, it is an element of a sequence h (1) ; h (2) :::h (t) ;

1For simplicity, we will focus on the case when both N and T are �nite, but we will
not rely on this assumption in any essential fashion.

2If some propositions may be true in all states of the world, 
 may be a proper subset of
[0; 1] : Alternatively, 
 may be set equal to [0; 1] with some states having zero probability
in all evaluations.
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in which each element incorporates all its predecessors. Second, it is a time-
dated event (a subset of the state space) which may be denoted Et, consisting
of all elements beginning with the Nt terms having values vn:

Et �
�
! : !n = 2

�(n+1) (vn + 1) for all n 2 Nt
	

Third, it is a compound proposition pt, which may be de�ned using the ^
operator, corresponding to logical AND. For pairs of elementary propositions,
let ^ be de�ned in terms of 
 as

pn ^ pn0 = f! : !n = !n0 = 1g
= Epn \ Epn0

More generally, for any collection of elementary propositions indexed by
N � N; we de�ne ^

fn2Ng

pn =
\

fn2Ng

Epn

The proposition representing the event Et associated with history h (t) is
then given by

pt =
^

fn2Nt:vn=1g

pn
^

fn2Nt:vn=�1g

:pn:

More generally, a compound proposition is derived by assigning truth
values of 1 or �1 to all pn where n is a member of some (possibly empty)
subset N (p) � N, leaving all pn , n =2 N (p) unconsidered. The set N (p)
is referred to as the scope of p, and is the disjoint union of N� (p) ; the set
of elementary propositions false under p; and N+ (p), the set of elementary
propositions true under p: The simple proposition pn has scopeN (pn) = fng :
We de�ne the null proposition p; such that p;n = 0; 8n and do not assign a
truth value to p;:
The OR operator is

pn _ pn0 = f! : !n = 1g [ f! : !n0 = 1g :

The class of all propositions in the model is denoted by P = f�1; 0; 1gN.
It is useful to consider more general classes of propositions P � P: To any
class of propositions P , given state !; we assign the truth value

t (P ;!) = sup
p2P

ft (p;!)g :

That is, P is true if any p 2 P is true, and false if all p 2 P are false. In
terms of the logical operations de�ned below, the set P has the truth value
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derived by applying to its members the OR operator de�ned for elementary
propositions by

pn _ pn0 = f! : !n = 1g [ f! : !n0 = 1g
and, more generally, by _

fp2Pg

p =
[
fp2Pg

Ep:

The relationship between events, propositions and histories may now be
developed further. First, there is a 1-1 correspondence between complete
histories, having a value h (t) for each t 2 T . This generates a natural
correspondence between events (subsets of the state space) and collections of
histories.
Any (non-null) compound proposition p corresponds, from the external

viewpoint, to an event

E (p) = f! 2 [0; 1] : !n = 0;8n 2 N� (p) ;!n = 1;8n 2 N+ (p)g � 
:

Since distinct compound propositions may be logically equivalent, this cor-
respondence is not 1-1.

4 The decisionmaker�s viewpoint

We consider a decision maker who is not aware of all the propositions in P.
The class of all propositions considered by individual i at time t is denoted P it :
This class must include all the decisions that are to made by decisionmaker
i at time t+1 3and will also include a variety of propositions about the state
of the world. As in the Grant and Quiggin (2004), we can de�ne logical
operations with respect to this subclass of P.

4.1 Full rationality in a bounded domain

An important special case is one that may be described as �full rationality in
a bounded domain�. In this case, the individual has access to a �xed set of
propositions P i � P closed under _ and ^�Without loss of generality, it may
be assumed that the set P i is generated by a set of elementary propositions
N i � N, that is, P i = 2N . The individual is unaware of elementary proposi-
tions in N�i = N�N i: Let P�i = 2N

�i
be the set of propositions generated

by elements of N�i:

3We do not allow for �unconscious decisions�.
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At any time t, full rationality requires that individual i is aware of the
history up to that time, insofar as it determines the truth value of proposi-
tions in N i. That is, full rationality in a bounded domain precludes imperfect
recall.
Thus, the event observed by individual i at time t is summed up by the

truth value of elementary propositions pn where n 2 N i
t = N

i\Nt . We have
a corresponding representation of: the history

hi (t) =
X
n2N i

t

2�(n+1) (vn + 1) ;

the associated compound proposition pt, consisting of the conjunction

pit =
^

fn2N i
t :v

n=1g
pn

^
fn2N i

t :v
n=�1g

:pn;

and the corresponding event Eit :
Given full rationality in a bounded domain, any proposition p may be

written from the external viewpoint as pi ^ p�i where pi 2 P i; p�i 2 P�i:
In particular, the proposition pt characterizing the time t event Et may be
written as

pt = p
i
t ^ p�it :

5 Probabilities

Suppose that we are given a measure � on 
; which may be taken to represent
the prior beliefs that would be held by the decisionmaker in the absence
of bounds on rationality, including bounds on the set of propositions under
consideration. Given such a measure, the structure of the state space derived
above is su¢ cient to give a complete characterization of Bayesian updating.
For any event E; we have, at time t; a derived measure

�t (E) =
� (E \ Et)
� (Et)

:

Note that we can now derive �t+1 (E) in two ways. First, we can repeat the
de�nition above, yielding

�t+1 (E) =
� (E \ Et+1)
� (Et+1)

:
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Alternatively, we can apply Bayesian updating to �t; yielding

�tt+1 (E) =
�t (E \ Et+1)
�t (Et+1)

:

Now we observe that, since E \ Et+1 � Et+1 � Et;

�t (Et+1) =
� (Et+1)

� (Et)

�t (E \ Et+1) =
� (E \ Et+1)
� (Et)

and hence,

�tt+1 (E) =

�
� (E \ Et+1)
� (Et)

�
�
�
� (Et+1)

� (Et)

�
= �t+1 (E) :

6 Restricted Bayesianism

Given full rationality on a bounded domain, it is natural to consider �it; the
restriction of the probability measure �t to events E (p) where p 2 N i: That
is,

�it (E (p)) = �t (E (p))

if and only if p 2 N i:
We now have two potential ways of deriving �it+1, given the observation

of Et+1: We can use the restriction procedure at time t + 1 instead of t;
obtaining �it+1 as the restriction of �t+1 to P

i: Alternatively, we can apply
Bayesian updating directly to �it using the information obtained from Eit+1:
The �rst approach yields, for any p 2 P i;

�it+1 (E (p)) = �t+1 (E (p))

=
�t (E (p) \ Et+1)

�t (Et+1)

=
� (E (p) \ Et+1)

� (Et+1)

where, as shown in the previous section, the last step works because E (p) \
Et+1 � Et+1 � Et so � (Et+1) = �t (Et+1)� (Et)

7



The second approach yields

�i;tt+1 (E (p)) =
�it
�
E (p) \ Eit+1

�
�it
�
Eit+1

�
=

�
�
E (p) \ Eit+1

�
�
�
Eit+1

�
where the second step follows from the de�nition of �t:We say that restricted
Bayesian updating is consistent if, for all i; t; p

�i;tt+1 (E (p)) = �
i
t+1 (E (p)) :

Suppose that, for all p; p0 such that p 2 P i; p0 2 P�i

� (E (p ^ p0)) = � (E (p))� (E (p0)) :
That is, the probabilities of propositions in the restricted domain for i are
independent of the probabilities of unconsidered propositions. It seems rea-
sonable to suppose that restricted Bayesian updating will be consistent under
these conditions. We now show that this is the case.

Proposition 1 Restricted Bayesian updating is consistent if and only if for
all p; p0 such that p 2 P i; p0 2 P�i; and all possible histories h� (E (p ^ p0)) =
� (E (p))� (E (p0)) :
Proof: Suppose the condition holds. Then, for all t;

� (E (pt)) = �
�
E
�
pit
��
�
�
E
�
p�it
��
:

In particular,

� (E (pt+1)) = �
�
E
�
pit+1

��
�
�
E
��
p�it+1

���
;

and, for p 2 P i;
� (E (p) \ Et+1) = �

�
E (p) \ E

�
pit+1

��
�
�
E
��
p�it+1

���
;

so,

�it+1 (p) =
� (E (p) \ Et+1)

� (Et+1)

=
�
�
E (p) \ E

�
pit+1

��
�
�
E
��
p�it+1

���
�
�
E
�
pit+1

��
�
�
E
��
p�it+1

���
=

�
�
E (p) \ E

�
pit+1

��
�
�
E
�
pit+1

��
=

�
�
E (p) \ Eit+1

�
�
�
Eit+1

�
= �i;tt+1 (p) :
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On the other hand, the condition can be false only if there exist p; h; t
such that

�i;tt+1 (p) 6= �it+1 (p)
that is,

�it
�
E (p) \ Eit+1

�
�it
�
Eit+1

� 6=
�
�
E (p) \ Eit+1

�
�
�
Eit+1

�
or

�it
�
E (p) \ E

�
pit+1

��
�it
�
E
�
pit+1

�� 6=
�
�
E (p) \ E

�
pit+1

��
�
�
E
�
pit+1

��
Now since

pt+1 = p
i
t+1 ^ p�it+1

we have

�it
�
E
�
p ^ pit+1 ^ p�it+1

��
�it
�
E
�
pit+1

�� 6=
�
�
E
��
p ^ pit+1 ^ p�it+1

���
�
�
E
�
pit+1

��
which implies

�
�
E
��
p ^ pit+1

�
^ p�it+1

��
6= �

�
E
��
p ^ pit+1

���
�
�
E
�
p�it+1

��
6.1 Example

Consider a state space of the form 
 = S1 � S2 with a product measure
� = �1�2: Suppose that variables of potential interest are x measurable with
respect to S1; z measurable with respect to S2 and

y = �x+ z;

where � is a (possibly unknown) parameter. Under the product measure
assumption, which implies independence of x and z, restricted Bayesian up-
dating is consistent for either S1 or S2 and therefore for any propositions
about the values of x or about the values of z: Conversely, if x and z are
not independent, restricted Bayesian updating will not apply. We consider
the case when a set of propositions about x; su¢ cient to fully characterize
the distribution of x; is considered,4 and z represents unconsidered possible
events.
Now, what about y? We have, in the absence of any hypotheses about z,

y = �+ �x+ ";

4For example, if it is known that x is normally distributed, a set of propositions about
the mean and variance of x is required.
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where � = E [z] ; " = z � �: Under plausible conditions, the decisionmaker
may be able to make the implicit assumption E [z] = 0 without any detailed
knowledge of 
 and z: For example, suppose that x is gross domestic product
and y is gross national product for some unspeci�ed country. The di¤er-
ence between x and y is determined by international income �ows, which
necessarily sum to zero for the world as a whole. So, a decisionmaker could
reasonably use the model

y = x+ "

while having no knowledge of factors determining ": More generally, even
when the value of E [z] is unknown and unconsidered, a decisionmaker might
have reasonable knowledge about � = @y=@x; so that Bayesian updating
applied to x may be useful even when y is the variable of interest.

6.1.1 An observation on decision theory

Allthough we have not formally considered applications to decision theory,
it is easy to see that for appropriately linear choice problems, restricted
Bayesianism applied to x yields optimal decisions (on the assumption that
no information is available about y or z): Assume for simplicity that the
unconditional expectation of z is equal to zero, and consider the problem of
choosing � to maximise E [v] where

v (�; y) = �y � c (�) ;

and c is a convex cost function. We have

E [v] = �E [y]� c (�)
= ��E [x]� c (�) :

Hence, the optimal policy, given an estimate of E [x] ; is to choose � such
that

c0 (�) = �E [x] ;

and the best estimate of E [x] may be obtained by restricted Bayesian up-
dating of the unconditional prior distribution �1:
In this context, then, it seems reasonable to suggest that an optimal

policy could be achieved solely by considering hypotheses about � and v:

7 Multiple priors

Thus far, we have considered cases where the prior distribution �t on the
restricted domain generated by the considered propositions is induced by a

10



unique prior � on the full state space, incorporating implicit probabilities for
unconsidered propositions. To generate a multiple priors model, it is natural
to suppose that there may be more than one such measure. An obvious way
to do this is to look at the measures induced conditional on the possible truth
values for one or more unconsidered propositions.
Considering any p0 2 P�i, there are two induced measures on P i; namely

�+ (E (p)) =
� (E (p ^ p0))
� (E (p0))

; p 2 P i

and

�� (E (p)) =
� (E (p ^ :p0))
� (E (:p0)) ; p 2 P i:

For a proposition p0 that is independent of P i in the sense that, for all p 2 P i

� (E (p ^ p0)) = � (E (p))� (E (p0)) :

we have �+ = �� since, for all p 2 P i

�+ (E (p)) =
� (E (p ^ p0))
� (E (p0))

=
� (E (p))� (E (p0))

� (E (p0))

=
� (E (p))� (E (:p0))

� (E (:p0)) =
� (E (p ^ :p0))
� (E (:p0)) = ��E (p)

In general, however, �+E (p) 6= ��E (p) ; and consideration of probability
values for p0 in the range [0; 1] gives rise to probabilities for p in the range
[��E (p) ; �+E (p)] : Thus, we can de�ne a set of priors

M (p0) =
�
��+ + (1� ��� : 0 � � � 1

	
:

The natural interpretation here is that each element of the set of multiple pri-
ors may be derived as a conditional probability measure, given a probability
number for the unconsidered proposition p0: Thus p0 has a status interme-
diate between propositions in P i that are under active consideration, and
unconsidered propositions in the case of restricted Bayesianism. Although
the decision-maker does not explicitly consider p0; the range of multiple priors
corresponds to the probability measure that would arise if p0 were a consid-
ered proposition with probability �:
For a more general version of the multiple priors model, let P � be a

set of unconsidered propositions, closed under : and ^; and let � be the
unit simplex with dimension equal to K = card (P �) ; having typical element
�=(�1; :::; �K) such that

P
k �k = 1. For each pk 2 P �; we have, as described

11



above, an induced measure on P i; which will be denoted �k and we de�ne
the set of priors

M (P �) =

(X
k

�k�k : � 2�
)
:

It is easy to check that this de�nition agrees with that given above for the
case P � = fp0;:p0g

7.1 Consistent updating with multiple priors

The de�nition of consistent updating with a unique measure � can be ex-
tended in a straightforward fashion to the case of a given �2M (P �) : For
each k; i; t we may de�ne �it;k as above and set

�it =
X
k

�k�
i
t;k

and similarly for �i;tt+1;k and �
i;t
t+1;k: For all i; t; p; k;

�i;tt+1;k (E (p)) = �
i
t+1;k (E (p))

then for all i; t; p
�i;tt+1 (E (p)) = �

i
t+1 (E (p))

so that consistent Bayesian updating for each �k is su¢ cient to ensure con-
sistent Bayesian updating for all � 2M (P �) : Necessity is trivial.
Now, by the de�nition of �k; we obtain:

5

Proposition 2 Consistent Bayesian updating for all � 2 M (P �) holds if
and only if, for any p; p0; p00 such that p 2 P i; p0 2 P �; p00 2 P�i;

� (p ^ p0 ^ p00) = � (p ^ p0) ^ � (p00)
5By additivity, the condition includes the special cases

� (p ^ p00) = � (p) ^ � (p00)

and
� (p0 ^ p00) = � (p0) ^ � (p00) :

For the �rst choose p 2 P i; p0 2 P �; p00 2 P�i;, apply the condition �rst with p; p0; p00;
then with p;:p0; p00 and add. Similarly for the second.

12



7.2 The evolution of the set of priors

The fact that all elements of M (P �) may be updated consistently does not
fully resolve the problems associated with updating multiple priors. Halpern
(2003) makes the point that deriving the Bayesian posterior for each prior
separately is problematic, given that, in general, observed signals will have
di¤erent likelihood for each of the di¤erent priors. It is natural to consider
whether there are conditions under which this problem will not arise, and, if
so, what are the implications for the structure of knowledge.
Examining the consistency condition above, we observe that there is no

problem with propositions ; p00 2 P�i; : By additivity, the condition includes
the special cases

� (p ^ p00) = � (p) ^ � (p00)
and

� (p0 ^ p00) = � (p0) ^ � (p00)
For the �rst choose p 2 P i; p0 2 P �; p00 2 P�i;, apply the condition �rst with
p; p0; p00; then with p;:p0; p00 and add. Similarly for the second.
On the other hand, by hypothesis, the elements of P � yield distinct con-

ditional probabilities for members of P i:Hence, we cannot expect a criterion
that will apply for all possible histories and time periods.
Suppose instead, we require that for all elements p 2 P i \N(t); p0 2 P �

� (p ^ p0) = � (p) ^ � (p0)

Then considered propositions for which the truth value is observed at time t
are independent of all elements of P �; and therefore do not a¤ect the weight-
ing that might be given to di¤erent priors.
Under the conditions discussed above, neither considered nor unconsid-

ered propositions provide any information about P � at time t: Hence, if the
set of multiple priors is to evolve, it can only do so if the truth value of some
p0 2 P � is revealed at time t; that is, if P � \N(t) is nonempty.

8 Example

Suppose
y = �x+ z + w

and that it is implicitly known that E [w] = 0 and that x;w and z are
independent.
Now suppose there exist one or more alternative hypotheses about the

value of z; each of which induces a prior distribution on y for given x. Then
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if we receive information on x we can update each of the conditional priors
on y in a consistent fashion.
As an example suppose that x is gross domestic product y is national

income, z is depreciation and w is international transfers. Given a sequence
of observations on x; the decision-maker may act as a restricted Bayesian
with respect to x and employ multiple priors with respect to y; each of which
corresponds implicitly to an alternative hypothesis about z:
Observe in addition that there may exist unconsidered propositions p

that are uninformative wrt any of w; x; y and z: Trivially, observation of the
truth value of such propositions does not imply any change in the restricted
Bayesian posterior, nor in the induced prior.

9 Concluding comments

In formulating more general representations of choice under uncertainty, it
is highly desirable to show that, under appropriate conditions, existing rep-
resentations can be derived as special cases. These conditions are often re-
strictive. Nevertheless, it is often the case that they may be satis�ed exactly
or as a reasonable approximation.
The Bayesian approach to decision theory is powerful and appealing.

However, the assumption, necessary for the model to be applied, that the
decision-maker possesses an exhaustive description of all possible states of
the world, with an associated probability distribution, is obviously unrealis-
tic. In this paper, we have derived necessary and su¢ cient conditions for the
consistency of Bayesian updating when applied to a restricted set of propo-
sitions, a subset of an exhaustive propositional description of the world.
The necessary conditions are highly restrictive, suggesting that, in many

cases, a multiple priors model may be more realistic. For this case also,
conditions have been derived under which each element of a set of multiple
priors may be updated consistently.
In general, neither of these sets of conditions may be satis�ed. Typi-

cally, learning is not simply a matter of updating priors but involves new
discoveries, imaginative conjectures, abandonment of previously maintained
hypotheses and so on. A central task for decision theory, partially addressed
by Grant and Quiggin (2004) is to develop models of these processes.
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