
 
R

es
ea

rc
h 

su
pp

or
te

d 
by

 a
n 

A
us

tra
lia

n 
R

es
ea

rc
h 

C
ou

nc
il 

Fe
de

ra
tio

n 
Fe

llo
w

sh
ip

 
ht

tp
://

w
w

w
.a

rc
.g

ov
.a

u/
gr

an
t_

pr
og

ra
m

s/
di

sc
ov

er
y_

fe
de

ra
tio

n.
ht

m
 

 
 

Learning and Discovery 
 

Simon Grant 
 

  
Rice University 

 

and 
 

John Quiggin 
Australian Research Council Federation Fellow, University of Queensland 

 
 

 
 
 

 
Risk & Sustainable Management Group 

 

 

Schools of Economics and Political Science 
University of Queensland 

Brisbane, 4072 
rsmg@uq.edu.au 

http://www.uq.edu.au/economics/rsmg 

 

Risk & Uncertainty Program Working Paper: R05_7 

(revised 27 July 2006) 



Learning and Discovery�

Simon Grant
Department of Economics, Rice University

John Quiggin
School of Economics, University of Queensland

27 July 2006

Abstract

We formulate a dynamic framework for an individual decision-
maker within which discovery of previously unconsidered propositions
is possible. Using a game-theoretic representation of the state space
as a tree structure generated by the actions of agents (including acts
of nature), we show how the existence of unconsidered propositions
can be represented by a coarsening of the state space. Furthermore
we develop a syntax rich enough to describe the individual�s awareness
that currently unconsidered propositions may be discovered in the fu-
ture. We consider quanti�ed beliefs derived as subjective probabilities
conditional on implicit beliefs about unconsidered propositions. We
derive conditions under which a Bayesian learning approach can be
applied to a subset of known propositions. We show that our model
of quanti�ed beliefs encompasses the case when individuals observe
events previously considered impossible, and discuss the implications
for the endogenous discovery of new propositions.
JEL Classi�cation: D80, D82
Key words: unawareness, bounded rationality
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Every solution of a problem raises new unsolved problems; the
more so the deeper the original problem and the bolder its so-
lution. The more we learn about the world, and the deeper our
learning, the more conscious, speci�c, and articulate will be our
knowledge of what we do not know, our knowledge of our igno-
rance. For this, indeed, is the main source of our ignorance - the
fact that our knowledge can only be �nite, while our ignorance
must necessarily be in�nite. Popper, On the Sources of Knowl-
edge and of Ignorance, 1963

1 Introduction

Economists and decision theorists have developed a powerful dynamic the-
ory of learning, based on Bayesian epistemology. Beginning with a prior
probability distribution over a set of states, information, taking the form of
a sequence of observations on partitions of the state space, induces a pos-
terior conditional distribution. Associated with this theory of learning is a
normative and positive theory of decision, including an analysis of the val-
uation of information, based on maximization of subjective expected utility
theory. There is, however, no corresponding theory of discovery, concerning
the way in which the state space itself may be re�ned and revised, or, in
epistemological terms, how learning raises new unsolved problems.
The crucial feature of Bayesian learning is the steady reduction of uncer-

tainty. Each signal realization eliminates possible states of nature, reducing
ultimately, with su¢ cient information, either to a discrete realized state of
nature or to an event of arbitrarily small prior measure. Yet, as Popper
(1963) has noted, echoing proverbial wisdom, learning commonly expands
the domain of our ignorance. The problem of �unknown unknowns�, famously
referred to by US Defense Secretary Rumsfeld, plagues any attempt to give
a complete formal account of our uncertainty about the world.
In decision-theoretic terms, the problem is that the set of states of nature

available for consideration by any decision-maker is necessarily incomplete.
This point may be made either by postulating the existence of a subset of
states that are omitted from consideration, or by treating the subjective space
as a coarsening of some more re�ned objective partition of the state space

2



into possible events. Approaches to this problem include Cubitt and Sug-
den (2001), Dekel, Lipman, and Rusticchini (2001), Epstein and Marinacci
(2006), Ghirardato (2001), Grant and Quiggin (2006), Heifetz, Meier, and
Schipper (2006), Kreps (1979, 1992), Modica and Rusticchini (1994, 1999),
Mukerji (1997) and Nehring (1999). Related work in a modal-logical context
includes that of Halpern (2001), Halpern and Rêgo (2005, 2006a,b). Alterna-
tive approaches, dispensing completely with the state space, include Gilboa
and Schmeidler (1995) and Karni (2005).1

The signi�cance of bounded rationality may be illustrated by the work of
Aragones, Gilboa, Postlewaite and Schmeidler (2005), who make the point
that the complexity of standard decision problems, such as the speci�cation
of a linear regression model, is, in general, so great that humans with bounded
calculation capacity cannot possibly consider all hypotheses that might be
relevant in the search for an optimal solution. It follows that learning is
possible without new data. Someone working with a locally optimal model
might, for example by talking with another person concerned with the same
problem, be led to consider a di¤erent and superior model. This �nding is
in contrast with the Bayesian case applicable under unbounded rationality
when the optimal model for a given data set is always known, and when
learning can take place only as a result of new data and raises the question
of when, if at all, Bayesian updating is reasonable for decision-makers with
bounded rationality.
A closely related observation is that of Maskin and Tirole (1999), who

show that incomplete contracts cannot be represented merely by making
knowledge about the state space private and unveri�able. As long as agents
can de�ne probability distributions over outcomes and undertake dynamic
programming, they can achieve �rst-best outcomes. This observation raises
the question of how best to represent bounded rationality and incomplete
knowledge of the state space. A consequent question, raised by Halpern and
Rêgo (2005), is how to represent individuals�awareness of the limits imposed
by their own bounded rationality.

1Kaneko & Kline (2006) also develop a dynamic model of decision makers with limited
cognitive abilities who only have a imprecise view of the environment in which they operate
but the emphasis in their model is on how the raw experiences of an individual might
develop from short-term memories to long-term memories and how these are used to
construct a personal view of the world.
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The aim of this paper is to address these questions. We claim that a
complete theory of belief and choice under uncertainty must incorporate the
discovery of new, previously unconsidered propositions and states of nature,
and that this process can only be modelled adequately by taking account of
the bounded rationality of economic agents.
The paper is divided into two parts. In Part I, we develop a dynamic

model of learning and discovery, su¢ ciently powerful to encompass a formal
presentation of statements such as that of Popper quoted above, as well as
precise statements about awareness of existential propositions. In particular,
we show how to describe an individual�s awareness that currently unconsid-
ered propositions may be discovered in the future, and show discovery of
previously unconsidered propositions is possible in our framework. In Part
II, we introduce quanti�ed notions of beliefs. We derive conditions under
which such beliefs may be de�ned and updated using the standard Bayesian
model, and extend this characterisation to encompass more general models
of belief such as the multiple priors model of Gilboa and Schmeidler (1989).
Using the concept of implicit beliefs about unconsidered propositions, we
show how individuals may have �impossible beliefs�, and how the falsi�cation
of implicit beliefs may lead to endogenous discovery of new propositions.

Part I: A dynamic model of learning
and discovery
The idea of discovery may naturally be expressed either in terms of the

discovery of new propositions expressed in the language available to us or in
terms of a re�nement of the state space we consider. The former approach,
which we will term �syntactic�, is intuitively natural, and allows the use of
the tools of modal logic, such as knowledge and awareness operators, as in
the work of Halpern and Rêgo (2005, 2006). The latter approach �ts more
naturally with economic models of choice under uncertainty and permits the
construction of an explicit dynamic representation. We therefore develop
both approaches in parallel, with a framework that allows direct translation
between semantic and syntactic constructs.
A crucial analytical device in achieving our representation of bounded

rationality is the adoption of the perspective of an unboundedly rational,
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but not necessarily perfectly informed, external observer, as in Grant and
Quiggin (2006). The external observer may be interpreted as having the be-
liefs and knowledge that would be available to the agent in the absence of
bounded-rationality constraints. Thus, the language available to the external
observer is rich enough to express propositions unavailable to the agent, and
similarly, the state space is rich enough to allow modelling of the develop-
ment of the agent�s knowledge and awareness, including the discovery of new
propositions. A similar approach is adopted by Halpern and Rêgo (2006b).
In section 2, we present an example based on the work of Aragones et

al. (2005) and a second example showing how unexpected observations can
generate new scienti�c discovery. In section 3 we present a tree-structure
representation of dynamic uncertainty and notation for modal-logical repre-
sentations of knowledge, expressibility and uncertainty of propositions. In
Section 4, drawing on Heifetz, Meier and Schipper (2006), we represent ex-
pressibility of propositions using the notion of a lattice of tree structures or-
dered by re�nement, or, alternatively by the scope of the set of propositions
available to individuals. A crucial feature of the structure is the inclusion
of a maximal element, corresponding to the external representation of the
problem that would be available to an unboundedly rational observer with a
given information set.
The main new contribution of Part I is presented in 5 and 6. In these

sections, we show how the dynamics of learning and discovery can be repre-
sented within the lattice structure derived previously, and how the modal-
logical framework of knowledge can be extended to incorporate the notion
that individuals may be aware that there exist unconsidered propositions
which they might subsequently discover, or which might be known to others.
The crucial innovations are the use of existence quanti�ers over domains of
propositions and the introduction of an awareness operator. We show that
such an extension is necessary in that an individual cannot know (in the
modal-logical sense) of the existence of unconsidered propositions.
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2 Examples

2.1 Fact-free learning

We �rst consider the notion of �fact-free�learning as described by Aragones
et al. Consider the general case examined by Aragones et al. (2005) of a data
set consisting of a variable of interest Y and m potential explanatory vari-
ables (X1; X2:::Xm) where the object is to derive an Ordinary Least Squares
regression model having at most K explanatory variables, and maximizing
(conditional on K) the coe¢ cient of determination R2K . Aragones et al show
that this problem is, in general, (NP-)�hard�in the sense of complexity theory.
For concreteness, we may consider the problem discussed by Aragones

et al, of deriving a model to predict economic growth. Take as a starting
point, an econometrician who has estimated a model of economic growth
with K = 3, where the explanatory variables are, say, initial income (nega-
tive and signi�cant), initial stock of physical capital (positive and signi�cant)
and dominant religious a¢ liation (insigni�cant). In this position, the econo-
metrician�s beliefs might be summarized by a probability distribution over
the parameter space for the relevant regression, with the distribution func-
tion being derived in the standard Bayesian fashion, assuming an initially
di¤use prior.
In an attempt to improve the model, the econometrician might either

consult the theoretical literature or examine the residuals. The theoretical
literature might suggest the inclusion of a measure of initial human capital.
Examination of the residuals might show that Hong Kong was a positive
outlier and lead to estimation of a new model, incorporating measures of
openness to trade. Since the data set is �xed, no new information is acquired
in this process: rather new inferences are undertaken with existing informa-
tion. In each case, the econometrician�s beliefs may be summarized in terms
of a probability distribution over two parameter spaces, one for the old model
and one for the new one.
Now consider an external perspective, that of an unboundedly rational

observer with access to the same data as the econometrician. The observer
would be able to formulate all possible hypotheses regarding the data gen-
erating process (Hendry 1987) that produces the set (X; Y ) ; including as a
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subset of this class of hypotheses all linear models of the relationship between
Y and the explanatory variables X. For such an observer, fact-free learn-
ing would not be possible. However, new information would allow Bayesian
updating of the probability distribution of the parameters of the data gener-
ating process. A central idea of the present paper is to consider the knowledge
available to a boundedly rational decision-maker relative to that available to
an unboundedly rational external observer.

2.2 Experimental discovery

We now consider an example where new hypotheses arise from the occurrence
of previously unconsidered events. The example is based on a highly stylized
version of research into atomic and sub-atomic structure during the 20th
century. The agent, a scienti�c researcher, is concerned to discover evidence
supporting or rejecting the �solar system�model of the atom, with a nucleus
orbited by electrons. He considers undertaking an experiment, in which an
electron beam is �red at a thin sheet of metal. Passage of electrons through
the metallic sheet is taken as evidence for the solar system model and absorp-
tion of electrons by the sheet is taken as being inconclusive. Alternatively
the agent may take a default course of action, such as pursuing some other
line of research. In a standard decision model, we might represent this by
the decision tree in Figure 1.
FIGURE 1 NEAR HERE
As illustrated there are three points in time, referred to as instants, t =

0; 1; 2. At t = 0 there is a decision node (labeled 0) for the researcher, who
is denoted as player 1. At t = 1, conditional on the researcher�s decision
to undertake the experiment, there is a chance node (decision of Nature,
denoted as player 0). At each node, we will denote a move to the left by �L�
and a move to the right by �R�. Where there is no decision, the single default
move is denoted R.
The situation as described is one of imperfect information. If the re-

searcher undertakes the experiment, moving to the node R, he does not
know whether Nature will choose R (passage of electrons) or L (absorption).
However, he has available a well-developed theory of the value of informa-
tion, allowing individuals to calculate the optimal choice in situations of this
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kind, where it can be supposed that subsequent decisions will be in�uenced
by the information (if any) observed at t = 1.
We now consider a more radical form of uncertainty, in which there is

a possibility that is unforeseen by the researcher. This is the possibility
that the electron beam will interact with particles in the nucleus, producing
previously unobserved emissions such as gamma rays. For the purposes of
the example, we shall assume that the emission of gamma rays means that no
useful information is obtained regarding passage or absorption of electrons.
The possibility of gamma ray emission may be represented by adding an

extra instant, three extra chance nodes and an extra terminal node, as in
Figure 2. Now, Nature�s move at t = 1 determines whether gamma rays will
be emitted (R) or not (L). If gamma rays are not emitted, the experiment
proceeds as before at t = 2, producing passage or absorption. In this case,
the researcher does not become aware of the unrealized possibility of gamma
ray emissions.
FIGURE 2 NEAR HERE
If gamma rays are emitted, the researcher is confronted with new, previ-

ously unconsidered, possibilities at t = 3, and may formulate new hypotheses
to explain the unexpected observation. In particular, the researcher, or others
may be led to consider the hypothesis that protons, neutrons and electrons
are not fundamental building blocks of matter but are themselves made up
of smaller subatomic particles.
Processes of this kind occur not only in scienti�c research but in day-to-

day economic activity. For example, entrepreneurs discover and exploit new
market opportunities that others have not previously considered. The aim
of this paper is to provide a framework within which such activities may be
modeled and analyzed.

3 Structure and notation

We use a dynamic tree structure based on that of an extensive form game be-
tween Nature and a boundedly rational individual, with additional structure
intended to permit the use of semantic and modal logic operators. Nota-
tion is drawn from Belnap, Perlo¤ and Xu (2001) and Halpern (2003), along
with standard extensive-form game theory. The model is explicitly �nite,
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as regards the number of possible nodes in the tree structure, semantically
distinct propositions, time periods and so on. This turns out to be techni-
cally convenient in a number of respects. More signi�cantly, it re�ects the
fact that the model deals with decisions made by a �nite, boundedly rational
individual, who can act only in discrete time.

3.1 Nodes and Trees.

The elementary units of this model are a set of nodes N , n = 0; : : : ; N ,
partially ordered under a relation � into a tree structure � . The correspond-
ing weak order is �; where n1 � n2 is interpreted as (n1 � n2) _ (n1 = n2).
Nodes are binary (two successors), unary (one successor) or terminal (no
successors). Two distinct nodes n1, n2 are comparable if either n1 � n2 or
n2 � n1.
The main interest is in binary nodes. All such nodes are treated as repre-

senting decisions, either by the individual decision-maker or by Nature. 2 As
discussed in more detail, below, at each such node n, the agent controlling
the node, either the individual or Nature, makes a decision, represented as
setting the value of a proposition dn either to True or False. A chain c in � is
a totally ordered subset of � . A subtree is a subset of � satisfying postulates
P.1-P.5 listed below.
We now describe the tree structure in more detail. The postulates are as

follows:
P.1. Nontriviality and Finiteness: N is a non-empty �nite set of

nodes, n = 0; 1::::N:
P.2. Partial causal ordering: The binary relation � is transitive and

antisymmetric.
P.3. No backward branching: Incomparable nodes never have a com-

mon upper bound. For distinct nodes n1; n2;

(n1 � n3 ^ n2 � n3)) (n1 � n2 _ n2 � n1)
2Note that decisions over arbitrary �nite sets of alternatives can be represented using

binary nodes. As an illustration, Figure 2 shows Nature choosing between three alterna-
tives (gamma ray emission, electron passage and electron absorption). This is represented
using two binary nodes and one unary node.
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Forward branching represents the openness or indeterminacy of the future
and the absence of backward branching represents the determinacy of the
past. By virtue of P.3, any n that has predecessors has exactly one immediate
predecessor, which we will denote n�. This asymmetry is the characteristic
feature distinguishing tree structures from general partially ordered networks.
P.4. Historical connection: Every two nodes have a common lower

bound

8n18n29n̂jn̂ � n1 ^ n̂ � n2.

By virtue of P.1 and P.4, there must exist a unique initial node, and it
will be denoted by 0.
For any n; n0 we say that n0 is an immediate successor for n if n � n0 and

there exists no n00, n � n00 � n0. Similarly, for any n, n0 we say that n0 is
an immediate predecessor for n if n0 � n and there exists no n00, such that
n0 � n00 � n.
P.5 Binary: Each node has zero, one or two immediate successors.
A node with two or one immediate successors is called a decision node.

For a decision node with two immediate successors n, the immediate suc-
cessors are denoted nR and nL. A trivial decision node n has exactly one
successor nR. A terminal node has no successors. The existence of terminal
nodes is implied by P.1, but terminal nodes will play no substantive role
in the analysis to follow, since all relevant bounds will be derived from the
bounded rationality of individuals. The indicator function ind (�) is de�ned
on the set of non-terminal nodes and takes on the value 1 (respectively, 0 ) if
it is the individual (respectively, Nature) who makes the choice at that node.
Thus a tree is characterized by the triple � = (N;�; ind (�)).

3.2 Occurrences, histories, events and instants

An occurrence O is a collection or set of nodes O � N . A history H is
a maximal chain in � . For any n, the partial history for n, denoted H�

n ,
is the maximal chain for which n is an upper bound. Let jH�

n j denote the
height of node n (that is, the �length�of the partial history H�

n ). We add
the convention that the past history of the initial node 0 is ; and hence its
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height is zero. An event E is a union of histories. E(n) is the union of the set
of histories passing through n, that is, H � E(n) i¤ n 2 H.
We assume all histories considered in the model can be traced to a com-

mon origin (this is essentially P.4) and that the individual has a �nite time
horizon. The terminal period can be taken to extend past this time horizon.
So without signi�cant loss of generality we can assume that the length of all
histories in � is T .3

Given this convention, we shall refer to the occurrence consisting of all
nodes, for which the past history has some given length t as the instant t.
That is, instants are �horizontal slices�of the decision trees. An instantaneous
occurrence Ot is a collection of nodes all occurring at the same instant t.
For any event E, and instant t there is a unique instantaneous occurrence
Ot = E \ t.
The ordering � induces an ordering on instantaneous occurrences, also

denoted �. De�ne Ot � O0t0 if for each n0 2 O0t0 the predecessor of n0 at time
t , given by

n = H�
n� \ t

satis�es n 2 Ot.

3.3 Syntax and semantics

For a given tree � , the syntactic structure of the model begins with a set of
propositions P� , de�ned as sentences in a formal language. The language
is built up from a set of primitive propositions B� , the standard logical
operators _;^ and :; and a tense logic operator w� derived from the tree
structure � . The elements of P� are well-formed formulae built up from these
elements: the syntax is standard and is not described in detail.
A crucial element of the model, re�ecting the bounded rationality of in-

dividuals that is of central concern here is that, in general, not all sentences
derivable in a formal language that is rich enough to describe the objective
world will be expressible in P� . The idea of expressibility, developed in more
detail below, is that a proposition should be characterized by a set of nodes
at which it is true. For p 2 P� , truth is relativized to nodes in the given tree

3In Figure 1 (respectively, 2) the length of all histories in the tree is two (respectively,
three).
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� : for n 2 N , the statement �p is true at n�is written (� ; n) j= p. Some, but,
in general, not all, of the propositions in P� can be evaluated directly from
the topology of the tree structure.
Of particular importance is the subset of decision propositions D�� B� ,

D� = fd0� ; d1� ; :::; dN�g indexed by the set of nodes, where for a node n� , dn�
is interpreted as �The relevant agent (the individual or Nature) chose R at
n� .�4 A central feature of the framework adopted here is that the truth value
for decision propositions is derived directly from the tree structure. Propo-
sition dn� is true at n0, written (� ; n0) j= dn� , only if nR � n0. Notice the
convention (adopted in general) that a proposition dependent on a decision
at node n is false at n0, where n � n0. So, for example, in the tree in Figure
2, the propositions �nature moves R at 2�and �nature moves L at 2�are both
false if the individual moves L at node 0, since 2 � n0 , for n = 1; 3 and 6.
In addition, we can derive, as in Belnap, Perlo¤ and Xu (2001), the tense

logic operator w� , where w�p is interpreted as �it was true that p�directly
from the tree structure � , assuming that the truth value of the proposition
p is known.

De�nition 1 (� ; n) j= w�p i¤ there exists n0 � n and (� ; n0) j= p. 5

Proposition 1 For any n there exists pn in the logical closure of D� such
that pn is true precisely at n

Proof: Assume n 6= 0. Let n� be the immediate predecessor of n; and
suppose wlog that n = (n�)R. Then the proposition pn � dn�� ^ : (w�dn�� )
that is �It is true, and has not earlier been true that the decision maker at
n� chose R�is true precisely at n.
Now, for 0, let p0 = : (w�p), where p is any valid formula. �
That is, any node can be characterized by the unique partial history

leading to that node, and this characterization has an expression in the logical
closure of D� .

4The choice of R is arbitrary. The analysis could equally well be undertaken in terms
of d̂n� , where for node n, d̂n� is interpreted as �the relevant agent chose L at n.�Note that
it is not true that d̂n� � :dn� . If node n is never reached then both dn� and d̂n� are false.

5Noting that the set of nodes is �nite, this de�nition can be expressed without quanti-
�ers, as :

�W
n0�n (� ; n

0) 2 p
�
:

12



Corollary 2 For any occurrence O � N there exists p (O) in the logical

closure of D� such that p is true precisely on O.

Proof: The required proposition is just
W
n2O pn. �

In general, the set P� will include many sentences that are not syntacti-
cally expressed in terms of decision propositions dn, that is, are not in the
logical closure of D� . The semantic content of the model lies in the assign-
ment of truth values to such propositions for given node n. In the example
illustrated in Figure 2 we may consider the propositions p
 �gamma rays have
been emitted�and pe �electron passage has taken place�. Proposition p
 is
true at nodes 5 and 9, and false at all other nodes. Proposition pe is true at
node 8, and false at all other nodes.
Formally, truth is determined by a valuation function V� (�;n) : P� !

fTrue; Falseg and truth values satisfy the usual logical properties. As above,
we have the associated notation (� ; n) j= p for V� (p;n) = True. Conversely,
we can de�ne an interpretation function = (�; �) mapping propositions p into
the occurrence (that is, the set of nodes) for which p is true.
Propositions, p, p0 are semantically equivalent if for all nodes n, V� (p;n) =

V� (p
0;n). That is, two propositions p, p0 are semantically equivalent if

= (p; �) = = (p0; �), and so = partitions P� into a set of equivalence classes,
which may be denoted by P�== and referred to as the set of semantically
distinct propositions.
As shown in Corollary 2, each occurrence O is characterized by a proposi-

tion p (O) in the logical closure of D� , and so each equivalence class in P�==
contains a canonical element of the logical closure of D� .
Following Belnap, Perlo¤ and Xu (2001), we also introduce the notion

that a proposition p 2 P� is settled true at n if for all n0 � n , V� (p;n0) =
True.

3.4 Knowledge and information

Fix a tree structure � . We specify an information correspondence �� : N !
2N , which describes the set of nodes the individual considers possible at the
instant in which node n arises, that is, her information set at n. Note that
we are following conventions of modal logic of knowledge, where information
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sets are de�ned for every possible state of the world. By contrast the usual
convention of game theory is that information sets for an individual are
de�ned only for decision nodes controlled by that individual, and not for
�chance�nodes controlled by Nature (or, in a multi-player game, by other
players).
We require that n 2 �� (n), and also that if n 2 t, �� (n) � t, that is, the

individual knows what instant she is at.6 Unless otherwise noted, we assume
that �� satis�es the standard properties, namely:
I.1 �� induces a partition of each instant t.
I.2 if n0 2 �� (n), then (n0)� 2 �� (n�).
I.3 For any instant t and any pair of nodes n, n0 in t, if there exists a pair

of nodes n̂ and n̂0, and an instant t̂, such that (n̂; n̂0) � t̂, n̂ � n, n̂0 � n0,
ind (n̂�) = 1, n̂ = (n̂�)R and n̂0 =

�
(n̂0)�

�L
, then �i� (n) \ �i� (n0) = ?.

I.2 says an individual never forgets any information she had in previous
instants. I.3 entails that she knows her own moves. Notice that the hypoth-
esis of I.3 may be interpreted as saying that the pair of nodes n̂ and n̂0 in
instant t̂ arise from di¤erent choices by the individual in the previous instant
(that is, n̂ follows from a choice of R by the individual at node n̂�, and n̂0

follows from a choice of L by the individual at node (n̂0)� ). I.3 then requires
that this pair of nodes and any pair of their respective successor nodes cannot
reside in the same information set. Together I.2 and I.3 imply the individual
has perfect recall within the tree structure.
The information correspondence associated with the tree illustrated in

Figure 2 may be taken to be: �� (n) = fng for n 6= 4; 5 and �� (4) =
�� (5) = f4; 5g . That is, the researcher does not learn the result of the
experiment (if undertaken) until t = 3.
We can now de�ne the knowledge (modal) operator k� which will form

the basis of an extension of the formal language available to the individual.
The proposition k�p is stated as �the individual knows p �.

De�nition 2 For p 2 P� , (� ; n) j= k�p if for all n0 such that n0 2 �� (n),
(� ; n0) j= p.

6The latter assumption is not essential to the analysis, but simpli�es the formulation
of the lattice structure in subsequent sections, and also the characterisation of probability.
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We de�ne a set of propositions Q� , available to the individual at � ; and
containing the set of sentences P� extended to incorporate the knowledge
operator k� .
A useful derived operator (Hart, Heifetz and Samet 1996) is

the knowing whether operator j�p � k�p _ k�:p;

Note that in the structure de�ned here, the set of nodes is �xed and �nite,
and knowledge operators are de�ned relative to that set of nodes. By con-
trast, a common approach is to begin with a set of propositions and derive
a state space for which any two propositions that are not logically equiva-
lent are semantically distinct. When combined with knowledge operators,
this approach generates an uncountably large state space (Hart, Heifetz and
Samet 1996).
We can derive

the considered operator c�p � j�p _ k�:j�p; and

the unconsidered operator u�p � :c�p:

In Halpern and Rêgo�s (2005) syntactic rendition of the semantic model
of Heifetz, Meier and Schipper (2006), the operator c� is referred to as the
awareness operator. In view of Proposition 3 below, and implications de-
veloped thereafter, we prefer the term �considered�. We follow Halpern and
Rêgo (2006) in proposing a broader notion of awareness, developed below.
As already observed, the state space in this model is �nite, and the �nite

set P� is rich enough to describe all distinct events. We similarly assume
that Q� is �nite, but require that it be rich enough that for any p 2 P� ;the
propositions k�p; j�p; c�p and u�p are all elements of Q� . Thus, the indi-
vidual �knows what she knows�as regards propositions in P� , but does not
have access to propositions containing chains of modal operators of arbitrary
length.7

Proposition 3 Under the stated conditions, if p 2 P� , then, for all n,
(� ; n) j= c�p.

7We can formalize this, and the extension of the knowledge operator to Q� by stating
that for any, p such that k�p 2 Q� ; (� ; n) j= k�p if for all n0 such that n0 2 �� (n),
(� ; n0) j= p:
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Proof: Recall that = (p; �) is the set of nodes in � at which p is true. If
�� (n) � = (p; �), then k�p. If not, there exists n� 2 �� (n) ; (� ; n�) j= :p.
By I:1; for any n0 2 �� (n), n� 2 �� (n0) = �� (n). Hence, for any n0 2
�� (n) ; (� ; n

0) j= :k�p. Hence, (� ; n) j= k�:k�p. �
That is, all propositions p 2 P� for which truth value can be assigned

relative to the given tree � are considered.

3.5 The existential quanti�er

A critical feature of the model to be developed here is that the individual
decisionmaker has the experience of discovering new possibilities, and indi-
vidual may reasonably anticipate discovering new possibilities in the future.
However, this anticipation cannot be expressed in P� or even in the richer
set Q� augmented by the modal operators of knowledge. To capture it, we
introduce an existence quanti�er over propositions.
The existence quanti�er 9 is used in conjunction with a formula for sub-

stitution, for example:

9p 2 Q� : (p) p0) ^ : (p0 ) p) :

That is, there is some (non-equivalent) proposition p that implies p0. We
will write a generic existential proposition as

9p 2 Q̂; � (p) :

where Q̂ is the domain of quanti�cation, and � (p) is a syntactically valid
sentence in which p appears as a predicate variable (Je¤rey 1990).
To refer to the existence of undiscovered possibilities we need an appro-

priate domain of quanti�cation Q̂ encompassing propositions that may be
considered in the future. We now turn to the task of constructing a frame-
work in which such domains may be de�ned.

4 The Lattice structure

Proposition 3 shows that a useful notion of unawareness requires the existence
of more than one tree structure for the world, such that propositions may be
expressible relative to some trees but not relative to others. To represent this,
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we adopt an approach similar to that of Heifetz, Meier, and Schipper (2006),
but with additional structure required to capture notions of learning and
discovery, and to allow for higher-order propositions representing awareness
of unconsidered propositions.
We consider a lattice T of trees, each denoted � (and each satisfying

P.1�P.5) and an ordering v, for which there exists a maximal tree � 0, that
is � v � 0 for all � . Associated with � 0, are a valuation function V0 :
P0 ! fTrue; Falseg ; a possibility correspondence �0 : N0 ! 2N0, and
an assignment giving for each n0 in N0, a tree � (n0) v � 0 in T . We de�ne
sets of propositions P;Q where P is the closure of [�2TP� under logical
operators (and therefore in�nite) Q is the closure of P under the knowledge
operator and R is the logical closure of Q under the existence quanti�er and
the awareness operator to be de�ned below.
Here the tree � (n0) is the subjective representation of the world that

arises if the individual is at the objective node n0. We assume that T is the
image of N0 under the given assignment. That is, for any � 0 in T , there exists
n00; �

0 = � (n00).
The possibility correspondence �0 represents the information sets that

would apply in a standard decision tree in which the individual is fully aware
of the structure of the external world as represented by � 0. The lattice struc-
ture captures the fact that, because of bounded rationality, not all proposi-
tions expressible in � 0 are available to the individual at node n0 and therefore
the information set actually available to her must be represented in terms
of a coarser information structure. The proposition sets P, Q and R incor-
porate propositions in successively richer languages, derived from a base set
B which includes a subset D , the disjoint union of the decision proposition
sets D� for each � .

4.1 Mappings between trees

If for any pair of trees � and � 0, we have � v � 0, then there exists a surjective
mapping r�

0
� : f0; : : : ; N 0

� 0g ! f0; : : : ; N�g exhibiting the property that for
any pair of nodes n0; n00 in f0; : : : ; N 0

� 0g, r�
0
� (n

0) = r�
0
� (n

00) implies
��H�

n0

�� =��H�
n00

�� . That is, if two nodes in the �ner tree are mapped to the same
node in the coarser tree, then these nodes must come from the same instant
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in the �ner tree. Further, we assume that, if � v � 0, then the associated
mapping r�

0
� (�) is order-preserving, that is, for all n0, n00 2 � 0, n0 �� 0 n00

implies r�
0
� (n

0) �� r�
0
� (n

00) in � .
Since both � and � 0 are trees each satisfying P.1�P.5, it readily follows

that if two nodes in the �ner tree are mapped to the same node in the coarser
tree, then their immediate predecessors, if distinct, are also mapped by r�

0
� (�)

to a common node in the coarser tree. Since � 0 is maximal with respect to the
ordering v, it follows that all histories in all trees have the same length and
the following relations hold between any two trees ordered by v. That is, r� 0�
induces a surjective mapping of occurrences in � 0 onto occurrences in � such
that histories map to histories, events to events, instantaneous occurrences
to instantaneous occurrences.
In particular, we can now distinguish the objective and subjective per-

spectives. Consider an individual who is at node n0 in the maximal tree � 0.
Associated with this node is a subjective tree � (n0) and a mapping r0�(n0).
The image of n0 under r0�(n0) may be denoted by n

�
0 = r0�(n0) (n0). This is

the node in the subjective tree at which the individual is located, given the
objective node n0.
Returning to our example of the scienti�c researcher in Section 2, let the

tree in Figure 2 be � 0 and consider the following tree �̂ ; illustrated in Figure
3.
FIGURE 3 NEAR HERE
We have �̂ v � 0 with an associated surjective mapping given by

r0�̂ (0) = 0, r0�̂ (1) = i, r
0
�̂ (2) = ii, r

0
�̂ (3) = iii,

r0�̂ (4) = r0�̂ (5) = iv, r
0
�̂ (6) = v, r

0
�̂ (7) = r

0
�̂ (9) = vi, r

0
�̂ (8) = vii.

That is, the tree �̂ is de�ned by identifying nodes 4 and 5 and nodes 7 and
9. An alternative coarsening could be obtained by identifying nodes 4 and 5
and nodes 8 and 9. As shown below, this choice will not make a di¤erence
to the expressibility of propositions in �̂ .
We take the lattice for the world of this stylized example as T = (� 0; �̂).

The associated assignment of trees is � (n0) = �̂ if n0 6= 9; and � (9) = � 0.
That is, the researcher only becomes aware of the possibility of gamma ray
emission at t = 3 in the history where the experiment is undertaken and
nature chooses to emit gamma rays.
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More generally, observe that, whenever � v � 0 v � 00, for any n00 in � 00

r�
0

�

�
r�

00

� 0 (n
00)
�
= r�

00

� (n
00) : (1)

That is, the diagram in Figure 4 commutes.
FIGURE 4 NEAR HERE
We denote the inverse correspondence

�
r�

0
�

��1
by ��

0
� , and for any n in

N (�), refer to ��
0
� (n) as the preimage of n in �

0. Similarly, for any occurrence
O � N (�), write

��
0

� (O) = [n2O��
0

� (n)

and refer to ��
0
� (O) as the pre-image of O.

By an argument similar to that yielding 1, for any n0 in � 0

��� 00
�
r�

0

� (n
0)
�
= ��

0

� 00 (n
0) : (2)

Suppose � v � 0. Then there exists a 1�1 mapping �̂�� 0 : P�== ! P� 0==
induced by ��

0
� . For given p 2 P� ; and p0 2 P� 0, we have that p0 2 �̂�� 0 (p) if

and only if = (p0; � 0) = ��
0
� (= (p; �)). Hence, a truth valuation function V� 0

induces a truth valuation function V� and therefore, for all � ; truth valuation
functions may be derived from V0. For any p 2 P� this construction implies
the existence of a corresponding equivalence class in P. The canonical el-
ement of this class is referred to as the corresponding proposition in P for
p.
With this setup, we can formalize the notion that a proposition p 2 P�

is expressible in � 0 .

De�nition 3 A proposition p 2 P is expressible in � if the corresponding
occurrence in � 0 is the pre-image of an occurrence in � . A proposition p 2 P�
is expressible in � 0 if the corresponding proposition in P is expressible in � 0.

If � v � 0; then any p 2 Q� is expressible in � 0. In particular, any dn� 2 D�

is expressible in � 0.
Consider the example illustrated in Figures 2 and 3. We observe that

the proposition p
 2 P corresponding to the occurrence f5; 9g in � 0 is inex-
pressible in �̂ ; since this is not the pre-image of any occurrence in �̂ . The
proposition pe 2 P corresponding to the occurrence f8g in � 0 is expressible,
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since it is the pre-image of fviig in �̂ . Since pe; de�ned previously in � 0; is
expressible in �̂ ; we will use the same label to refer to this element of P�̂ .
With this convention, P�̂ � P.
In general, a given sentence in natural language will not correspond, in a

semantic sense, to the same proposition in di¤erent trees. For example, the
sentence �electron absorption is observed�corresponds to occurrence f7g in
� 0 and to occurence fvig in �̂ . However, f7g 6= �0� (fvig). This mismatch
is an inevitable consequence of the coarsening of the tree structure, which
implies that, relative to the more re�ned language, distinctions are blurred,
qualifying conditions are omitted and so on. As discussed below, the concept
of ambiguity, in its ordinary language sense, must be understood in the light
of the observation that sentences cannot, in general, have the same meaning
for individuals (or a given individual at di¤erent nodes) with di¤erent tree-
structure representations of the world.
For given � 0; � v � 0; and �� 0, the mapping r�

0
� induces a possibility corre-

spondence �� : N� ! 2N� which makes the diagram in Figure 5 commute.
FIGURE 5 NEAR HERE
That is, let r̂0� : 2

N0 ! 2N� be the set mapping induced by r0� , giving for
any O � N0;

r̂0� (O) =
�
r0� (n) : n 2 O

	
Now for any n 2 � ; de�ne

�� (n) = r̂
0
�

�
�0
�
�0� (n)

��
In the construction of the world, we require that, for any node n0 the possibil-
ity correspondence ��(no) be that induced from �0 in this way. Now consider
the corresponding diagram for � ; � 0 such that � v � 0; shown in Figure 6.
FIGURE 6 NEAR HERE
We have:

Lemma 4 Given the construction above, the diagram in Figure 6 commutes.

Proof: Consider � ; � 0 such that � v � 0.
We want to show that for n0 in � 0;

��

�
r�

0

� (n
0)
�
= r̂�

0

� (�� 0 (n
0)) :
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That is,

r̂0�

�
�0

�
��0

�
r�

0

� (n
0)
���

= r̂�
0

�

�
r̂0� 0
�
�0

�
��

0

0 (n
0)
���

:

By applying 1 and 2 to the RHS and LHS respectively, both sides of this
equation are equal to

r̂0�

�
�0

�
��

0

0 (n
0)
��
.

�
This set-up allows us to give content to the notion of unconsidered propo-

sitions developed above. First note that, given Lemma 4, knowledge opera-
tors for � are expressible in � 0, where � v � 0. Take a proposition p0, express-
ible in � 0, and node n0 2 � 0 with corresponding node n = r�

0
� (n

0) in � The
occurrence ��

0
� (�� (n)) is the preimage of �� (n) in �

0. Then k�p0 is true at n0

in � 0 if ��
0
� (�� (n)) � = (p0; � 0). If p0 is not expressible in � , (� 0; n0) j= :k�p0;

and similarly, (� 0; n0) j= :k� (:k�p0). Conversely, if (� ; n) j= :k�p; then also
(� 0; n0) j= :k�p. Hence, we have:

Proposition 5 For an individual with tree � , u�p if and only if p is not
expressible in � .

Proof: �If�follows from the argument above. �Only if�follows from Propo-
sition 3.

4.2 Expressibility and knowledge of existential propo-
sitions

We now consider what kinds of existential propositions are expressible in
Q�(n0). We have:

Proposition 6 Suppose Q̂ � Q�(n0).Any existential proposition of the form
9p 2 Q̂; � (p), where � (p) is a well-formed formula incorporating p is con-
tained in the logical closure of Q�(n0). Conversely, if Q̂ * Q�(n0), then propo-
sitions of the form 9p 2 Q̂; � (p) are inexpressible in � (n0).

Proof: Noting that Q�(n0) is �nite, the condition Q̂ � Q�(n0) iimplies that
propositions of the form 9p 2 Q̂; � (p) may be expressed in Q�(n0), without
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use of the existence quanti�er, as:_
p2Q̂�Q�(n0)

� (p) , (3)

so that for Q̂ � Q�(n0), the existence quanti�er 9 does not generate any
propositions not already contained in the logical closure of Q�(n0). For the
converse observe that, if Q̂ * Q�(n0), Q̂ contains propositions inexpressible
in Q�(n0)and it follows that 9p 2 Q̂; � (p) is also inexpressible in � (n0). �
Observe in particular that if Q̂ = Q�(n00) n

0
0 � n0; Q̂ � Q�(n0). That is,

since there is no �forgetting�in this model, existential propositions regarding
past setsQ�(n00) are always expressible without use of the existence quanti�er.
This will not be true, in general, in the case n00 � n0 or when n0 and n00 are
on di¤erent histories and therefore unrelated by �. Nevertheless, given past
experience of discovery, it seems reasonable to suppose that the individual
will be aware [in a sense to be made precise] of the possibility that there
will exist a set of propositions Q�(n00)

that will be expressible if she reaches

n00 � n0; (or, in the subjective viewpoint available at n�0 = r0�(n0) (n0) ; the
node n0 = r0�(n0) (n

0
0)) and therefore that she is aware at n0 of propositions of

the form 9p 2 Q�(n00)
; � (p).

An important implication of Proposition 6 is that, in the �nite languages
considered here, no increase in expressive power is required to incorporate
the existence quanti�er 9.
On the other hand, the following result shows that an individual can

never know (in the modal-logical sense formalized above) that there exists
an unconsidered proposition.

Proposition 7 For any n0 2 � 0; and any n00 � n0;

(� 0; n0) � :k�(n0)
�
9p 2 Q�(n00)

;u�(n0)p
�
:

Proof: Either Q�(n00) = Q�(n0) in which case every p 2 Q�(n00)
is ex-

pressible in � (n0), in which case by Proposition 3, c�(n0)p for all p; so :9p 2
Q�(n00)

; u�(n0)p; or, alternatively, Q�(n0) � Q�(n00); in which case 9p 2 QQ�(n00)
; u�(n0)p

(considered as a �nite disjunction in � 0) is inexpressible in � (n0). Hence, by
Proposition 5

(� 0; n0) � u�(n0)
�
9p 2 Q�(n00)

;u�(n0)p
�
;
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which implies

(� 0; n0) � :k�(n0)
�
9p 2 Q�(n00)

;u�(n0)p
�
:

�
Proposition 7 is central to our analysis and to the concerns of Halpern

and Rêgo (2005), who raise the question of whether, in the interactive un-
awareness framework of Heifetz, Meier and Schipper (2006), there exists an
extension of the logic of awareness such that it would be possible to say,
for example, that there exists a fact that agent 1 is unaware of but agent
1 knows that agent 2 is aware of it. Although interaction between agents
is not considered here, we show that, given the interpretations of k, c and
u adopted here agents cannot know that they may in the future consider
currently unconsidered propositions . If the future self is considered as agent
2, and awareness is de�ned in terms of the operator c, the question raised by
Halpern and Rêgo (2005) may be answered in the negative. Proposition 7
shows that the knowledge operator k which generates the set of propositions
Qt is not powerful enough to permit statements of the form �I know that
there exists some currently unconsidered proposition p�.

5 The awareness operator

We have argued that, while individuals cannot consider (in the formal sense
derived above) propositions that are inexpressible in their subjective tree-
structure representation, they may nonetheless be aware of the possibility
that they will in the future discover previously unconsidered propositions.
To formalize this idea, we propose an awareness operator, constructed in a
manner similar to that used for knowledge operators. The idea is to de�ne
a set of nodes, analogous to the information set used in the construction of
the knowledge operator.
The motivation for developing an awareness operator is similar to that of

Halpern and Rego (2006), but there are di¤erences in the terminology and
formalization. In particular, whereas the notion of awareness developed here
is tied to the hierarchy of state spaces, Halpern and Rego allow di¤erential
awareness in an example with only a single state of nature.
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5.1 Awareness of existential propositions

Fix a node n0 in the objective tree and associate with the corresponding
subjective node n�0 = r

0
�(n0)

(n0) a set A (n�0) � N (� (n0)) such that
(i) n�0 2 A (n�0)
(ii) if n0 2 A (n�0) ;��(n0) (n0) � A (n�0)
Property (i) will imply that the individual can engage in quanti�ed modal

logical reasoning with regard to the propositions considered at n�0, using the
existence quanti�er 9. Property (ii) will imply that A (n�0) cannot yield
information that would allow a re�nement of ��(n0) either at n

�
0 or any n

0 �
n�0.
With each n0 2 A (n�0) ; we associate a set of admissible predicates�(n0;n0).

Admissible predicates � (p̂) are those the individual can entertain at n0 when
quanti�ed over the propositions expressible at n0. We assume that, for all
n0 2 A (n�0), � (n0;n0) includes all predicates of the form p̂) p, for p 2 Q�(n0)
Now we introduce the logical operator a�(n0) (p) stated as �is aware of p

at n0�and say that a�(n0) (p) is true whenever p is equivalent to a proposition
of the form

9p̂ 2 Q̂, � (p̂) ,

where n0 2 A (n�0) ; Q̂ = [n002�0�(n0)(n0) Q�(n00) and � 2 �(n
0;n0) is an admis-

sible predicate. That is, Q̂ is the set of propositions of which the individual
may be aware at n00 for some n

0
0 in the pre-image of n

0 in the objective tree
� 0.
We �rst show that, if an individual considers a proposition, they are aware

of that proposition.

Lemma 8 For each n0 2 N0, p 2 Q�(n0), (� 0; n0) j= c�(n0) (p) ) (� 0; n0) j=
a�(n0) (p).

Proof: Set Q̂ : = Q�(n0), and consider the predicate � (p̂) = p̂, p. �
Hence we de�ne R�(n0) as an extension of Q�(n0) obtained by adding

propositions of the form a�(n0) (p) as described above. As before, we do not
require that every possible sentence be included in R�(n0). As foreshadowed
above, for all n0; R�(n0) � R, where R is the closure of Q under the existence
quanti�er and the awareness operator.
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As an example, consider the propositions of the form

9p0 2 Q�(n00)
: u�(n0)p

0,

for n00 � n0. That is, the individual is aware of the possibility that there exist
propositions which she will discover in the future, if she reaches node n00.
Recall the example illustrated in Figures 2 and 3 and the position of the

researcher at t = 0. The researcher can consider the domains QL
3 and Q

R
3 ,

containing propositions of which she will be aware at t = 3 conditional on
choosing L (not to conduct the experiment) orR (to conduct the experiment)
at t = 0. From the external perspective the proposition (9p0 2 QL

3 : u�(n0)p
0)

is settled False at t = 0 while the truth value of (9p0 2 QR
3 : u�(n0)p

0) depends
on Nature�s choice at node 2 in instant t = 1.
As another example, for any proposition p, such that k�(n0)

�
:j�(n0)p

�
,

consider the proposition

9p0 2 Q�(n00)
: u�(n0)p

0 ^ (p0 ) p) . (4)

That is, there is a currently unconsidered proposition inQ�(n00)
which, if true,

would imply p. For example, in a criminal investigation, the fact that a per-
son is classed as a suspect typically means that, if some additional evidence
were obtained, that person�s guilt could be inferred. However, investigators
will not, in general, know the exact nature of the evidence they are looking
for. The evidence could be either propositional (X was at the scene of the
crime) or epistemological (X knew that the gun was loaded).
Of equal importance is awareness about future choice nodes. In stan-

dard models where all contingencies are considered, individuals currently at
some node n0 can, in general correctly anticipate their choices contingent
on arriving at any given future choice node, with an associated information
set. This is true whether preferences are dynamically consistent, as in the
standard model of Bayesian subjective expected utility, and some non-EU
models (Machina 1989), or merely behaviorally consistent, as in non-EU rep-
resentations of dynamic choice such as that of Karni and Safra (1990).
Such self-knowledge is not assumed here for two reasons. First, some

future choice nodes are not represented in the subjective tree � (n0). Indi-
viduals are generally supposed to be aware that they will be confronted with
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choices in the future that they have not yet considered. We can write this as

a�(n0)

�
9d 2 Q�(n00)

: u�(n0)d ^ (ind(d) = 1)
�
. (5)

Alternatively, the individual may consider a future choice, but may be
aware that there exists an unconsidered proposition which, if true, would
lead them to choose one way, and if false, would lead them to choose the
other way. For a considered decision proposition d; ind(d) = 1 this may be
written as a�(n0)

�
9p0 2 Q�(n00)

: u�(n0)p
0 ^ (p0 , d)

�
.

With this setup, a naive decisionmaker is one for whomA (n�0) = ��(n0) (n
�
0).

That is,at node n�0 in the subjective tree � (n0) available to them at n0, they
can apply modal logic to the set of propositions Q� , but they are not aware
of the possibility that they may discover new propositions in the future.

6 Dynamics of learning and discovery

We are now in a position to describe the dynamics of learning and discovery,
from the external perspective given by � 0. Consider a move from n�0 to n0,
arising from a decision dn�0 . Associated with this move is an assignment of
the tree � (n0) and possibility correspondence ��(n0). We adopt the following
assumption.

Assumption (Increasing re�nement) For all non-initial n0, �
�
n�0
�
v

� (n0).

Thus, the individual�s representation of the world, represented by the tree
�
�
n�0
�
at node n�0 , and by the tree � (n0) at node n0, grows progressively

�ner. On the other hand, given the assumptions on the associated possibility
correspondence ��(n0), the individual�s knowledge about the world, relative
to any �xed � v �

�
n�0
�
grows more accurate. Thus subjective uncertainty

may either increase or decrease over time.
This distinction may be usefully expressed in terms of propositions.

De�nition 4 For given n0, consider a proposition p 2 Q that is settled
true at n.8 The individual learns p at n0, written (� 0; n0) j= L�(n0)p, if

8Note that the requirement that p be settled true at n involves no real loss of generality.
If p is not settled true, either :p is settled true, or a proposition of the form p _ w�p (or
else :p _ w�:p) is settled true at n:
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(� 0; n0) j= k�(n0)p and
�
� 0; n

�
0

�
j= :k�(n�0 )p , that is, if she knows p at n0 but

not at n�0 .

De�nition 5 Consider a proposition p 2 Q. The individual discovers the
possibility p at n0 , written (� 0; n0) j= D�(n0)p, if (� 0; n0) j= c�(n0)p and�
� 0; n

�
0

�
j= u�(n�0 )p , that is, if she considers p at n0 but not at n

�
0 .

In the example set out above, if the researcher arrives at node vii in �̂
(corresponding to node 8 in the external tree � 0) she learns the proposition
pe �electron passage has taken place�. If she arrives at node 9 in tree � 0, she
both discovers and learns p
 �gamma ray emission has taken place�.
In the case of discovery, the new proposition was not expressible in the

subjective tree �
�
n�0
�
which is why the process must be described with re-

spect to � (n0). In the case of learning, the newly-learned proposition may
be, but need not be expressible in the subjective tree �

�
n�0
�
. In particu-

lar, in the case of fact-free learning, the newly-learned proposition was not
expressible in the subjective tree �

�
n�0
�
. Thus, fact free learning involves

both discovery and learning. On the other hand, Bayesian learning involves
no discovery, but does require the observation of information, so that ��(n0)
induces a re�nement of the set of histories relative to ��(n�0 ).

De�nition 6 Continuing discovery: We say that the world is characterized
by continuing discovery at n0 if for every history h passing through the in-
formation set �0 (n0) ; there exists n00 � �0 (n0), n00 2 h and p =2 Q�(n0) such
that (� 0; n00) j= D�(n00)

p

The example illustrated in Figures 2 and 3 exhibits this property at node
5 but not elsewhere. A realistic extension allowing for multiple experiments
would do so at most nodes in subtrees where the researcher decides to carry
out experiments.

6.1 Discussion

We �rst observe that, from the external perspective, the existence quanti�er
can be used to describe unconsidered propositions.

Proposition 9 For any n0 2 N0, (� 0; n0) �
�
9p 2 Q : u�(n0)p

�
if and only if

� (n0) 6= � 0.
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Proof: If � (n0) = � 0; then, for all p 2 Q; (� 0; n0) � c�(n0)p by Propo-
sition 3. If � (n0) 6= � 0; then there exist at least two nodes n00; n

00
0 2 N0

such that r�(n0)0 (n00) = r
�(n0)
0 (n000). Hence, the proposition dn00 is inexpress-

ible in � (n0) and, by Proposition 3 (� 0; n0) � u�(n0)dn00 ; so that (� 0; n0) ��
9p 2 Q : u�(n0)p

�
as required. �

This proposition gives an exact characterization from the external view-
point, but not one that is very useful from a subjective viewpoint, since it
is not clear what it would mean for an individual to recognize that her tree
� (n0) was or was not equal to � 0; and it is not true in general that the in-
dividual will achieve the full awareness implied by Q�(n0) = Q�0 for some
n0.
A more useful characterization may be derived from the concept of con-

tinuing discovery:

Proposition 10 Fix a node n0. If the world is characterized by continuing
discovery at n0 then, for any n̂ � n0, 9 n00 � n̂; such that

(� 0; n0) �
�
9p 2 Q�(n00)

: u�(n0)p
�
:

Proof: Consider a history passing through �0 (n0) and n̂. By the de�ni-
tion of continuing discovery, each such history must contain a node n̂00 such
that

�
9p 2 Q�(n̂00)

: u�(n0)p
�
. If n̂00 � n̂; set n00 = n̂00. If not, then since no

propositions are forgotten, we can set n00 = n̂. �
Again, there is no way for the individual to determine, reasoning with

the set of propositions in Q�(n0) that the world is characterized by contin-
uing discovery. But an individual willing to rely on philosophical induction
may reasonably conclude that, since the world has been characterized by
continuing discovery in the past, it will continue to be so in the future.
Observe that an unboundedly rational agent, with access to the external

tree � 0, does not gain any bene�t from awareness of propositions involving
future discovery. For such an agent, all a¢ rmative propositions of this kind
are false: the unboundedly rational agent never makes discoveries.

Part II: Beliefs, probabilities and choice
In Part I, we used a modal-logical de�nition of knowledge as the ba-

sis for our characterization of considered propositions and awareness. For
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many purposes in economics, a quanti�ed concept of belief, such as subjec-
tive probability, is more valuable. The purpose of this part of the paper is to
develop such a concept and relate it to the lattice structure developed above.
Note that, as is common in the literature, knowledge in our framework is a
stronger concept than �belief with probability 1�. Whereas our conception of
knowledge is partitional, and therefore excludes �false knowledge�, our repre-
sentation of beliefs allows for �impossible beliefs�.
In Section 7 we introduce probability concepts and argue that subjective

probabilities may be induced from the probabilities that would be held by an
unboundedly rational observer, conditional on implicit beliefs about uncon-
sidered propositions. We de�ne the special case of restricted Bayesianism,
which corresponds to the observer�s unconditional marginal probabilities on
events considered by the agent. Next, we show how the model allows for
impossible beliefs, modelled as the falsi�cation of implicit beliefs, leading to
the occurrence of events with zero subjective probability.
In Section 8 we consider, given the existence of unconsidered proposi-

tions, under what conditions a standard Bayesian learning approach can be
applied to a subset of known propositions. We derive su¢ cient conditions
for a framework in which prior subjective probabilities are induced by an
�underlying�probability distribution on the objectively given state space. In
essence, these conditions amount to a requirement that the restricted domain
in which Bayesian learning is applied should be orthogonal to currently un-
considered propositions that may be discovered during the period of Bayesian
learning. This point is of particular relevance in considering the contribu-
tion of Aragones et al. (2005). We show that in the regression context they
consider, the conditions we derive amount to requirements for orthogonal-
ity restrictions separating the block of variables under consideration from
the rest of the data set. Under appropriate orthogonality conditions, it is
possible to show that the regression problem posed by Aragones et al is
computationally tractable.
In section 9 we show that with our lattice structure of di¤erent-tree rep-

resentations of the world, ambiguity in a semantic sense naturally arises in
the agent�s subjective view of the world. Furthermore, a multiple prior quan-
ti�cation of the uncertainty embodied in the agent�s subjective view of the
world can be obtained by conditioning on the possible truth values for one
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or more implicit beliefs
In section 10 we discuss the way in which the agent�s learning about

previously-considered propositions leads endogenously to the discovery of
new propositions. In particular, we claim that new discovery must occur if
the agent observes events believed �impossible�(that is, assigned zero prior
probability) as a result of the falsi�cation of implicit beliefs.
Finally, in section 11 we take some preliminary steps towards the de-

velopment of a theory of choice for boundedly rational agents aware of the
incompleteness of their state space. We argue that non-EU models of choice
under uncertainty may be interpreted as heuristic adaptions of EU prefer-
ences to the context of an incomplete state space. Some possible behavioral
implications are discussed.

7 Probabilities and beliefs

Up to this point we have eschewed any consideration of the individual (at n0)
having quanti�able beliefs over the nodes she perceives as possible for a given
tree � (n0) that represents her current perception of the world. In this section
we shall introduce such beliefs. The central idea is to posit that quanti�ed
beliefs can be represented by probabilities induced from an underlying prob-
ability distribution on the objectively given state space, possibly conditional
on implicit beliefs about unconsidered propositions. We consider conditions
under which the standard Bayesian learning approach can be applied to the
subset of known propositions.

7.1 The structure of probabilistic beliefs

More formally, for a given objective node n0 and the associated subjective
tree � = � (n0), we shall consider the case where for each node n in the tree
� , given the unconditional likelihood of reaching that node, we can quantify
by a well-de�ned probability the likelihood the move from that node will
be R or L. That is, associated with the tree � is a probability assignment
�� : N ! [0; 1] with the properties

�� (0) = 1

�� (n) = ��
�
nR
�
+ ��

�
nL
�
.
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Also, we have a conditional probability assignment on nodes. For any n; such
that � (n) > 0; � induces an assignment � (�;n) such that, for n0 � n9

� (n0jn) = � (n0)

� (n)
:

This assignment can be extended to yield probability distributions for
either horizontal slices (instantaneous occurrences) or vertical slices (histories
and events) in the tree.
For any t; the assignment �� induces a probability distribution for instan-

taneous occurrences Ot, given by

�� (Ot) =
X
n2Ot

�� (n)

with the usual convention that �� (;) = 0.
For any partition of an instant t into occurrences O1t; :::; OKt; we have

KX
k=1

�� (Okt) = 1:

For O0t such that ��t (O
0
t) > 0, we obtain, for any Ot; the usual conditional

probability:

�� (OtjO0t) =
�� (Ot \O0t)
�� (O0t)

:

Now for any history H; with terminal node n (H;T ) let

~�� (H) = �� (n (H;T )) :

Then X
H

~�� (H) = 1

For any event E let
~�� (E) =

X
H2H(E)

~�� (H)

so that ~�� is a probability distribution over events in the tree � , given by the
total probability of histories in which a node in the event occurs at some time

9In the cases n0 � n; the conditional probability assignment is trivial.
For n0 � n; � (n0jn) � 1:
For n0; n0 
 n & n 
 n0; � (n0jn) � 0:
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t; and with a slight abuse of notation, we may write ~�� (E;n) for ~�� (Ej fng).
Again, we adopt the usual convention that ~�� (;) = 0.
Finally we may de�ne a probability distribution, with associated condi-

tional probabilities, for general occurrences as the sum of probabilities for
histories intersecting the occurrence, that is, the probability of the event �the
occurrence takes place for some t0. These need to be de�ned carefully to
allow for the fact that di¤erent occurrences may occur at di¤erent time pe-
riods. Such occurrences may be disjoint, considered as sets of nodes, even
though the histories on which they occur overlap; in this case we want the
conditional probability to be non-zero. We therefore de�ne:

~�� (O) =
X

H2H(O)

~�� (H) (6)

~�� (OjO0) =
P

H2H(O)\H(O0) ~�� (H)P
H2H(O0) ~�� (O

0)
: (7)

We can also de�ne absolute and conditional probabilities for propositions
p 2 Q� , writing:

~�� (p) = ~�� (= (p; �))
~�� (p;n) = ~�� (= (p; �) ;n)

7.2 Derivation of probabilistic beliefs with bounded
rationality

Now consider the case of unconsidered propositions. We have a lattice of
trees, each of which may be associated with a probability assignment. The
problem now is to de�ne a probability �� in such a way that, for � v � 0,
the triangular diagram involving �0; �� and �� 0 commutes. The approach
proposed here is to begin with a set of beliefs �0 (n0) from the external
perspective, contingent on the available information. These are interpreted
as the probability beliefs the individual would hold in the absence of the
constraints associated with bounded rationality.
Next, we introduce the idea of an implicit belief. Let p 2 P be an un-

considered proposition, which may in general be written as a compound
proposition of the form (p1 _ p2::: _ pK) _ (:p10 _ :p20 ::: _ :pK0). That is, p
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asserts the truth of p1; p2:::pK and the falsity of p10 _ p20 :::_ pK0 where the pi
and pi0 are unconsidered propositions. An assignment of probability 1 to an
unconsidered proposition p (simple or compound) will be referred to as an
implicit belief.
Now consider the conditional probability distribution (�0 (n0) jp), and the

associated marginal distribution over � given by

�� (njp) =
X

n02�0� (n)

(�0 (n0) jp) .

That is, the beliefs of the individual with subjective tree � are those
that the unboundedly rational individual would hold given the information
contained in p; and restricted to the events and propositions expressible in
� .
We have:

Lemma 11 If � v � 0, and p is a proposition unconsidered in � 0 (and hence
also in �)

�� (njp) =
X

n02�� 0� (n)

�� 0 (n
0jp) .

Proof: X
n02�� 0� (n)

�� 0 (n
0jp) =

X
n02�� 0� (n)

X
n02�0� (n)

�0 (n0jp) :

So, by equation (2), characterizing the commutativity properties of �, the
result holds. �

Corollary 12 : Consistency similarly applies for the probability distributions
over events and propositions ~�.

7.3 Restricted Bayesianism

In the absence of any implicit beliefs, we begin with �0 de�ned on � 0 and
de�ne, for any n:

�� (n) =
X

n02�0� (n)

�0 (n0) .

We will call this choice for �� restricted Bayesian. It is the subjective
probability distribution over events expressible in � that would be held by a
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decision-maker with access to the maximal tree � 0, prior probability distrib-
ution � and information set �(n0).
In general, restricted Bayesian beliefs will be reasonable within �small

worlds�in the sense described by Savage (1954). That is, a boundedly rational
Bayesian will de�ne particular subproblems for which she judges that a well-
de�ned prior over relevant states (the projections of events in the larger
world) is available, and will then apply Bayesian decision theory to these
subproblems. One of the concerns of this paper is to specify conditions
under which such a procedure may be applied in a consistent fashion.

7.4 Impossible beliefs

We next consider what it means for an individual to have �impossible�be-
liefs. Consider implicit beliefs that assign probability zero to an unconsidered
proposition p for which Pr(pj �0 (n0)) > 0. This means that at some node
n0 � n0, p will be true. At or before this point, the individual�s implicit
beliefs must be revised if coherent subjective probabilities are to be derived
conditional on those beliefs.
An obvious question is whether implicit impossible beliefs as we have

de�ned them lead to explicit impossible beliefs, that is, assigning probability
zero to some considered proposition p 2 P� for which Pr(pj �0 (n0)) > 0. As
a counterexample, consider the case where the individual�s subjective tree is
trivial, consisting of a single history passing through the node at which they
are located. The associated proposition set is similarly trivial.
On the other hand, as long as the individual�s subjective representation

of the world is reasonably rich, and the individual�s information sets are
non-trivial, impossible implicit beliefs will be re�ected in the occurrence of
events explicitly considered as having probability zero. Whenever a consid-
ered proposition p corresponds to an event that is a subset of the truth set
for the unconsidered proposition p0 and the implicit beliefs assign probability
zero to p0, the induced explicit beliefs must assign probability zero to p.

Example 1 In the research example, the researcher implicitly assigns zero
probability to gamma ray emission. Obviously, these probabilities must be
revised if gamma ray emission is observed.

34



8 Bayesian updating

Bayesian learning procedures are not, in general, reliable for boundedly ra-
tional agents, since the possibility of discovery cannot be excluded. Given
the power of Bayesian inference in many practical applications, however, it
is obviously of interest to consider special cases where Bayesian learning is
reliable.

8.1 Bayesian learning with unbounded rationality

We �rst show that the de�nitions above yield the standard characterization
of learning. That is, in the unbounded rationality case with imperfect infor-
mation and learning, Bayesian updating works in the usual fashion and so
the law of iterated expectations holds.
In the standard unbounded rationality case with tree � , the knowledge

of a partially-informed individual at time t; given the occurrence of node n
is summarized by an instantaneous occurrence �� (n). Hence, for any Ot
the probability for an individual with prior assignment �� and information
�� (n) is

~�� (Ot;n) = ��t (Otj�� (n))

and this de�nition can be extended to general occurrences as in equation (7).
Now suppose node n0 � n is realized at t0 > t; so the information set is

�� (n
0). For any instantaneous event O0t0 ; we can now derive ��t0 (O

0
t0 ;n

0) in
two ways. First, we can repeat the de�nition above, yielding

~�� (O
0
t0 ;n

0) = ��t (O
0
t0j�� (n0)) .

Alternatively, we can apply Bayesian updating to ~�� (O0t0 ;n) ; and de�ne

~�� (O
0
t0 ;n; n

0) =
~�� (O

0
t0 ;n)

~�� (�� (n0) ;n)
.

Say that Bayesian updating is consistent if for all n; n0 � n;O0t0,

~�� (O
0
t0 ;n; n

0) = ~�� (O
0
t0 ;n

0)

Now we observe that, since n0 � n:

~�� (�� (n
0) ;n) =

~�� (�� (n
0))

~�� (�� (n))
.
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Also, by construction

~�� (O
0
t0 ;n) =

~�� (O
0
t0)

~�� (�� (n))
,

and hence,

~�� (O
0
t0 ;n; n

0) =

�
~�� (O

0
t0)

~�� (�� (n))

�
�
�
~�� (�� (n

0))

~�� (�� (n))

�
=

~�� (O
0
t0)

~�� (�� (n0))

= ~�� (O
0
t0 ;n

0) .

Hence, we have, as expected:

Lemma 13 In the case of unbounded rationality with incomplete informa-
tion, Bayesian updating is consistent.

8.2 Unconsidered propositions and consistency

We next consider the more di¢ cult question. Suppose we consider two trees
� v � 0, nodes n in � and n0 in � 0, both occurring at instant t, and such that
n = r�

0
� (n

0), and information sets �� (n) and �� 0 (n0). Under what conditions
are the resulting conditional probabilities for � consistent with those for � 0,
that is, for any instantaneous Ot

~�� (Otj�� (n)) = ~�� 0
�
��

0

� (Ot) j�� 0 (n0)
�
.

Our �rst su¢ cient condition deals with the absence of learning in the move
from h� ;�� (n)i to h� 0;�� 0 (n0)i. Suppose that, in the move from h� ;�� (n)i
to h� 0;�� 0 (n0)i no new information is acquired. There is only the discovery
of new propositions and the associated priors, derived ultimately from �0.
That is, although the individual discovers new propositions inexpressible in
� ; she does not learn the truth value of any of these propositions.

Proposition 14 Let n be a node in � at instant t. If �� (n) = r�
0
� (�� 0 (n

0)),
then conditional probabilities are consistent.
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Proof: Under these conditions

~�� (�� (n)) =
X

n�2�� (n)

�� (n� ) =
X

n�2�� (n)

X
n02�� 0� (n� )

�� 0 (n
0)

=
X

n� 02�� 0 (n)

�� 0 (n� 0) = ~�� (�� (n
0))

Since, for any Ot,
��t (Ot) = �� 0t

�
��

0

� (Ot)
�

and this is also true for Ot \ �� (n) ; ��
0
� (Ot) \ �� 0 (n0), the result holds. �

Our next su¢ cient condition is based on (probabilistic) independence. If
the only information that is learned in the move from h� ;�� (n)i to h� 0;�� 0 (n0)i
refers to occurrences that are independent, with respect to �� 0 and the de-
rived probability distributions, of any occurrence expressible in � ; then this
information does not a¤ect the induced probabilities for such events. More
precisely, we say that O0t (an instantaneous occurrence in �

0) is independent
of instantaneous occurrences in � if for any Ot in �

�� 0t

�
��

0

� (Ot) \O0t
�
= �� 0t

�
��

0

� (Ot)
�
�� 0t (O

0
t) . (8)

Proposition 15 Let n be a node in � at instant t. If

�� 0 (n
0) = ��

0

� (�� (n)) \O0t (9)

where O0t in �
0 is independent of instantaneous occurrences in � ; then condi-

tional probabilities are consistent.

Proof: Under the stated conditions, for any Ot in � ; �� (n) \ Ot is an
instantaneous occurrences in � ; as is �� (n) ; so:

�� 0t

�
��

0

� (�� (n) \Ot) \O0t
�
= �� 0t

�
��

0

� (�� (n) \Ot)
�
�� 0t (O

0
t)

�� 0t

�
��

0

� (�� (n)) \O0t
�
= �� 0t

�
��

0

� (�� (n))
�
�� 0t (O

0
t)
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by independence. Now:

~�� 0
�
��

0

� (Ot) j�� 0 (n0)
�

=
�� 0t

�
��

0
� (Ot) \ �� 0 (n0)

�
�� 0t (�� 0 (n0))

=
�� 0t

�
��

0
� (Ot) \ ��

0
� (�� (n)) \O0t

�
�� 0t (��

0
� (�� (n)) \O0t)

(by (9) )

=
�� 0t

�
��

0
� (�� (n) \Ot)

�
�� 0t (O

0
t)

�� 0t (��
0
� (�� (n)))�� 0t (O

0
t)

(by (8) )

=
�� 0t

�
��

0
� (�� (n) \Ot)

�
�� 0t (��

0
� (�� (n)))

=
��t (�� (n) \Ot)
��t (�� (n))

(by results above),

as required. �

8.3 Restricted Bayesianism and updating

A particularly important application of Propositions 14 and 15 arises in the
context of learning and discovery. Let n0; n00 2 � 0 be such that n0 � n00 and
let � = � (n0) ; � 0 = � (n00). Assume continuing discovery, so � v � 0. Consider
an individual who moves from n0 to n0 replacing tree � by � 0 and possibility
set �� (n0) by �� 0 (n00). Under what conditions is restricted Bayesian up-
dating consistent? That is, under what conditions can the individual simply
update probabilities for occurrences O expressible in � using the new infor-
mation in �� 0 (n00) expressed with respect to the original tree � ; and obtain
the same subjective probabilities as would be yielded by deriving subjec-
tive probabilities relative to the new tree � 0 with the associated possibility
correspondence, so that

~�� (Oj�� (n00)) = ~�� 0
�
��

0

� (Ot) j�� 0 (n00)
�
. (10)

The results above give two cases where this is true. The �rst is where no
learning takes place between n0 and n00; so that no updating is required. The
second, more interesting case is where any new information expressible in � 0

is independent of any event in � that is, any newly discovered proposition
expressible in � 0 is independent of any proposition expressible in � .
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More generally, if equation (10) holds for all n00 such that n0 � n00, we
may say that Bayesian updating is consistent at n0.

8.4 The Aragones et al. example

The work of Aragones et al. shows that, in general, the problem of determin-
ing the optimal statistical model relating a set of m explanatory variables
to a dependent variable is NP-hard. The analysis of restricted Bayesianism
developed here may be used to characterize special cases when the prob-
lem is relatively easy. These special cases rest on orthogonality conditions
of one kind or another, where the independence requirements for consistent
Bayesian updating are satis�ed.
The simplest case is where the explanatory variables are known to be

mutually orthogonal, for example, because they arise from an experimen-
tal design. Then the optimal regression can be obtained by calculating and
ranking covariances with the dependent variable, then running a stepwise
regression. More generally, we may consider cases where the data set may
be partitioned into blocks which are mutually orthogonal. In this case, stan-
dard Bayesian reasoning may be applied within blocks, provided they are
su¢ ciently small to be tractable.
The analysis presented above shows that the orthogonality restrictions

required to make the regression problem tractable are an instance of more
general orthogonality conditions required to permit consistent use of Bayesian
updating in the presence of unconsidered propositions.

9 Ambiguity and multiple priors

Discussion of �ambiguity� in decision theory is most commonly associated
with a state-space approach where there are no unconsidered proposition.
The central idea is that an event (a measurable subset of the state space)
is ambiguous if it is not associated with a well-de�ned probability number.
Given a semantic interpretation of the state space (that is, a mapping be-
tween events and propositions such that each measurable event is the truth
set for some proposition), this approach naturally yields a probabilistic con-
cept of ambiguity, in which it makes sense to say that �a proposition is am-
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biguous if its probability is unknown�.
But, in ordinary language, ambiguity is a semantic notion, and its mean-

ing is di¤erent from (though intuitively related to) that de�ned above. An
ambiguous statement is one for which the meaning is ill-de�ned. The frame-
work developed above allows us to say that a proposition p; expressible in � 0
is semantically ambiguous in � if it is not expressible in � .
The analysis of restricted Bayesianism suggests a probabilistic characteri-

zation of ambiguity, most simply expressed in terms of propositions. Suppose
we are given a prior distribution �0; with induced distribution over propo-
sitions, evaluated at n0 given by ~�0 (�;n0). Call an uncertain proposition
p, (that is, one such that :j0p), probabilistically ambiguous at n0 for given
� (n0) ; if there exist p0 such that
(i)(� (n0) ; n0) j= u�(n0)p0, that is, p0 is unconsidered at n0 ;
(ii) ~�0 (p ^ p0;n0) 6= ~�0 (p;n0) ~�0 (p0;n0), that is, p and p0 are not indepen-

dent.
Thus, there exists a proposition p0 not considered at n0 but which, if

known to be true or false, would change the probability of p.

Lemma 16 Semantic ambiguity implies probabilistic ambiguity, but not vice
versa.

Proof: For the implication, let p0 = p. For the second, consider the case
where there are four states of nature, generated by two propositions p and
p0, and only p is expressible in � (n0). As long as condition (ii) holds, p is
probabilistically ambiguous but not semantically ambiguous. �
Observe that the de�nitions of semantic and probabilistic ambiguity are

based on the external viewpoint given by � 0 and not on the subjective view-
point, given by � (n0).
A couple of examples may be useful. Consider the case of an individual

faced with the choice between investing in stocks or in bonds. Both invest-
ments involve some risk, since the real return on bonds will depend on the
rate of in�ation, and the rate of return on stocks depends on a range of
systematic and idiosyncratic factors. We can simplify the discussion a little
by supposing that the stock investment is diversi�ed using an index such as
the Standard & Poors 500. The individual may be supposed to have a well-
de�ned probability distribution over possible future paths for the price level,
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derived from a tree structure where Nature can move the rate of in�ation
up or down at regular intervals. This distribution will be subject to learning
over time, but, it may be supposed, no signi�cant element of discovery.
By contrast, in observing past stock returns, and the explanations com-

monly o¤ered for them, the individual observes that large movements in stock
prices are commonly explained with reference to propositions unconsidered
by most participants in the market, such as the invention of a new product.
It follows that the stock market investment is subject to ambiguity. For any
feasible model of stock market returns, and prior distributions over relevant
parameters, the individual knows that it will be necessary, sooner or later, to
replace the model with an alternative, incorporating previously unconsidered
variables. Faced with such ambiguity, an investor might reasonably require
a premium in returns for equity (that is, from the external viewpoint � 0, the
expected return to equity should exceed the expected return to debt).
Now consider the Ellsberg two-urn problem, where an individual chooses

between an urn with a known distribution of black and white balls and a
second urn with an unknown distribution, each urn containing 100 balls. It
seems reasonable to suppose that the individual has access to a representa-
tion of the world su¢ ciently expressive to include the proposition �The second
urn has n black balls�where n ranges from 0 to 100, but this is unhelpful in
formulating a probability distribution. The ambiguity in the problem arises
from the existence of a range of unconsidered propositions of the general
form �Rule x was used to determine n�. If the individual had a probability
distribution over such rules, incorporating the true rule with non-zero prob-
ability, she could formulate a prior distribution over the number of balls and
update it in the standard Bayesian fashion. In practice, however, the class
of possible rules is so large that no-one can reasonably hope to consider all
its elements.

9.1 Multiple priors

Thus far, we have considered cases where the prior distribution �� on the
restricted tree � generated by the considered propositions is induced by a
unique prior �0 on the full tree � 0, because all unconsidered propositions are
independent of propositions expressible with respect to � . To generate a mul-
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tiple priors model, it is natural to suppose that there may be more than one
such measure. An obvious way to do this is to look at the measures induced
conditional on alternative implicit beliefs about unconsidered propositions.
Considering any p0 =2 P� , there are two induced probabilities for p 2 P� ,

namely

~�� (p;n0jp0) =
~�0 (p ^ p0;n0)
~�0 (p0;n0)

; p 2 P�

and

~�� (p;n0j:p0) =
~�0 (p ^ :p0;n0)
~�0 (:p0;n0)

; p 2 P� :

For a proposition p0 =2 P� that is independent of P� in the sense that, for all
p 2 P�

~�0 (p ^ p0;n0) = ~�0 (p;n0) ~�0 (p0;n0) ;

we have ~� (�jp0) = ~� (�j:p0) since, for all p 2 P� ,

~�� (p;n0jp0) =
~�0 (p ^ p0;n0)
~�0 (p0;n0)

=
~�0 (p;n0) ~�0 (p

0;n0)

~�0 (p0;n0)

=
~�0 (p;n0) ~�0 (:p0;n0)

~�0 (:p0;n0)
=
~�0 (p ^ :p0;n0)
~�0 (:p0;n0)

= ~�� (p;n0j:p0) :

In general, however, ~�� (p;n0jp0) 6= ~�� (p;n0j:p0), and consideration of prob-
ability values for p0 in the range [0; 1] gives rise to probabilities for p in the
range bounded by ~�� (p;n0j:p0) and ~�� (p;n0jp0). Thus, we can de�ne a set
of priors:

M (p0) = f�~� (�jp0) + (1� �) ~� (�j:p0) : 0 � � � 1g

The natural interpretation here is that each element of the set of multiple pri-
ors may be derived as a conditional probability measure, given a probability
number for the unconsidered proposition p0. Thus p0 has a status interme-
diate between propositions in P� that are under active consideration, and
unconsidered propositions in the case of restricted Bayesianism. Although
the decision-maker does not explicitly consider p0, the range of multiple priors
corresponds to the probability measure that would arise if p0 were a consid-
ered proposition with probability �.
For a more general version of the multiple priors model, let P � be a

�nite set of unconsidered propositions, closed under : and ^; and let � be
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the unit simplex with dimension equal to K = card (P �), having typical
element � =(�1; :::�K) such that

P
k �k = 1. For each pk 2 P �, considered as

an implicit belief, we have a conditional subjective probability distribution
~� (�jpk) and we de�ne the set of priors

M (P �) =

(X
k

�k~�k : � 2�
)
:

This de�nition agrees with that given above for the case P � = fp0;:p0g.

10 Endogenous discovery

In the model presented here, the discovery of new propositions and possi-
ble events has been treated as exogenous. When the individual arrives at a
given node in the objectively given tree, there is an associated more re�ned
subjective tree, but there has been no account of how this process of re�ne-
ment takes place. However, the developments presented above indicate some
possible approaches to the problem.

10.1 Impossible beliefs and discovery

First, the idea of impossible beliefs leads to some minimal conditions under
which discovery must take place. Suppose that the individual explicitly be-
lieves some event to have zero probability and the event occurs; this can only
arise in association with the falsi�cation of some implicit belief. In this con-
text, Bayesian updating on a restricted domain clearly breaks down, as does
any system of updating relying on conditional probabilities. Furthermore,
it is impossible to �start afresh�and derive subjective probabilities as mar-
ginal probabilities from the external probability distribution, conditional on
implicit beliefs. Hence, some revision of implicit beliefs is clearly necessary,
and this will normally generate a new and more re�ned tree structure.

Example 2 Consider further the example of observation of the emission of
gamma rays, making it necessary to re�ne the subjective tree structure to
accommodate the previously unconsidered event. This might be done in an
ad hoc fashion, treating the emission of rays as an unexplained natural phe-
nomenon. However, a more satisfactory adjustment would involve revision
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of implicit and explicit beliefs about atomic structure, generating one or more
models that predict the observed outcome with positive probability.

Possible requirements on the new beliefs are that they should assign pos-
itive probability to previously observed events, and that the new subjective
tree should be �close�to the old one in the topology de�ned by the lattice
structure, and that the set of implicit beliefs should change in a �natural�
way.
There is a trade-o¤ between these requirements. A minimal adjustment

to beliefs, su¢ cient to accommodate evidence inconsistent with previously-
held beliefs, may be de�ned by the requirement that there should be no
tree intermediate in re�nement between the new and old subjective trees
that is su¢ ciently re�ned to assign positive probability to the observed (and
previously believed impossible) event. Note that such a minimal adjustment
will not, in general be unique. A more radical change in implicit beliefs may
yield a better account of the observed evidence (that is, one that assigns a
higher probability to the observed outcomes).
The case when tree structures and implicit beliefs are adjusted only in

response to the breakdown of existing implicit beliefs corresponds reasonably
closely to Kuhn�s (1962) idea of a paradigm shift. In particular, it will not
be true, in general, that the new set of beliefs account better for all the
evidence than the old ones - evidence that con�rmed the old paradigm may
be anomalous (though not regarded as impossible) in the new one.
The discovery process described by Kuhn involves adherence to rela-

tively conservative �normal science�most of the time, with occasional radical
changes. This is also true, in a more nuanced way, of Lakatos�idea of com-
petition between scienti�c research programs.

10.2 Constrained-optimal discovery

An alternative approach to modelling endogenous discovery begins with a
notion of optimality, derived from the external perspective. Suppose that
bounded rationality is represented by a cost-of-calculation function, increas-
ing in the lattice order, so that consideration of more re�ned trees (larger
sets of propositions) is more costly. Then, given a known choice rule, a
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constrained-optimal choice of subjective tree may be de�ned from the exter-
nal viewpoint. The constrained-optimal path may be considered, either as a
possible descriptive model or as a normative benchmark.
Informally, consideration of a larger set of propositions (including possible

decisions) may be seen as having a value akin to information value or option
value. Thus, on a constrained optimal path, new propositions will be discov-
ered when the associated information value exceeds the marginal calculation
cost of the associated re�nement. At least as a �rst approximation, this
seems reasonable, re�ecting the idea that necessity is the mother of inven-
tion. As existing representations of the state space become less satisfactory,
there will be pressure to explore new ideas.

11 Choice

The development of a fully-�edged theory of choice is beyond the scope of
this paper. However, we may sketch an outline of the approach indicated by
the developments above.

11.1 Consequences

First, to each node in � 0 we may attach a consequence, either expressed as
an element of some outcome space or directly in utility terms. For present
purposes it is most usefull to assume monetary payo¤s. Now for each node
in a subjective tree � ; we similarly attach a payo¤ selected from the set r�1.
Note that there is no loss of generality in selecting a unique payo¤ for each
subjective node - if multiple payo¤s are considered possible we can re�ne the
subjective tree accordingly.
A natural benchmark is obtained from the position of the unboundedly

rational outside observer, assumed to share the same preferences as the sub-
jective individual. In particular, we assume the same ranking of lotteries
over completed histories. For simplicity, we will posit preferences given by
expected utility in each period, with stationary discounting over time.
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11.2 Expected utility

As has already been shown, Bayesian updating of beliefs on a restricted
state space is consistent, under the condition that unconsidered propositions
are stochastically independent of considered propositions. Suppose that, in
addition, outcomes are expressed in terms of monetary payo¤s (or, more
generally, some interval on the real line) and that preferences display CARA.
Then, from the external perspective, uncertainty about the outcomes arising
from the realisation of unconsidered propositions does not a¤ect optimal
choices over acts with payo¤s measurable with respect to considered events.
Thus, maximization of expected utility on the restricted domain is optimal.
Now consider discovery. This gives the individual access to previously

unconsidered propositions and events, including, in general, decision propo-
sitions corresponding to choices with outcomes measurable with respect to
the new event space. Suppose that the independence assumption remains
valid; that is, remaining unconsidered events are stochastically independent
of the newly discovered events as well as those that are already considered.
Then, expected utility is optimal for the newly discovered choices. More-
over, the independence of the newly discovered and previously independent
events means that, under CARA, the individuals optimisation problem may
be subdivided into separate optimisation problems, �new�and �old�.
Extending this idea over time, the optimal strategy for a boundedly ra-

tional individual in these circumstances is to apply expected utility in each
�small world� as the new choice problem is revealed. This seems a more
plausible account of reasonable EU-maximising behavior than does the stan-
dard model of a single contingent strategy, adopted at the beginning of the
individual�s lifetime and implemented consistently thereafter in response to
observed signals and the associated updating of the state space.

11.3 Minmax EU and other multiple-priors preferences

Much of the discussion of EU may be extended to the case of multiple priors.
The requirements for consistent updating have already been discussed, and
the CARA assumption plays a similar role. The main interest, therefore is in
the choice between minmax EU, maxmax EU and intermediate possibilities
such as �-CEU (see for example, Ja¤ray and Philippe 1997). As a rule
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for choice in the presence of unconsidered propositions, minmax EU may be
seen as embodying a maximally pessimistic assumption, namely that, what-
ever decisions the individual makes, �surprises�will be maximally unpleasant,
while the opposite is true for maxmax.
Such assumptions are embodied in many pieces of popular wisdom such as

�Murphy�s Law�, and, in the �precautionary principle�, widely advocated as a
basis for choices in the presence of environmental uncertainty. The rationale
for such a principle is evident from considering the engineering context from
which Murphy�s law emerges. Any complex engineering system has many
possible states, of which only a small minority are likely to yield optimal
performance as intended by the designers. Furthermore, these states are
likely to be relatively well-understood in terms of propositions considered in
the associated design theory. The outcome of attempts to operate the system
outside the limited parameter (sub)space associated with these propositions
will depend on a range of unconsidered propositions, and at least some of
these propositions are likely to turn out badly.
Natural environments may similarly be seen as complex systems. The

precautionary principle is associated with a general view of these systems as
being �nely-adjusted, with a propensity for breakdown in response to shocks.
Hence, it seems reasonable to assume the worst as regards the consequences
of poorly-understood innovations, such as the introduction of new pesticides.
By contrast, optimistic views of the environment as highly resilient lead to
the opposite view that restrictions based on environmental concerns should
be imposed only on the basis of proven damages.

11.4 Rank-dependent, Choquet and NEO-EU

Rank-dependent choice representations are, in a formal sense, closely related
to multiple-priors, at least within the framework of a fully-speci�ed state
space. For example, any RDEU model with concave (convex) transformation
of the cumulative distribution function can be represented as a multiple prior
model with minmax (maxmax) EU. However, the main case of interest, that
of overweighting extreme outcomes, has a di¤erent motivation and distinct
properties.
Suppose, instead of independence, that the outcomes associated with the
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realization of unconsidered events are likely to be positively correlated with
those associated with the realization of considered events (given the assign-
ment of consequences to nodes in the subjective tree). Then an optimal
decision strategy, expressed in terms of the distribution of considered out-
comes, will place more weight on the extreme events than on intermediate
events.
The NEO-EU model (Chateauneuf, Eichberger and Grant, 2006) is a po-

lar case of this, with a particularly appealing interpretation in the current
context. The weight on the linear component may interpreted as con�dence
in the implicit beliefs used to derive probabilities for considered events. Con-
versely, the combined weight on the extremes may be seen as an estimate
of the likelihood that the implicit beliefs will be violated in the given choice
context, with their second parameter determining the likelihood ratio of fa-
vorable to unfavorable surprises.
On the one hand the occurrence of �unlikely�events will reduce con�dence

in the implicit beliefs, leading to an increase in the combined weight placed
on the extremes, as in Eichberger, Grant and Kelsey (2006). On the other
hand, the discovery of new propositions and the associated revision of beliefs
may lead to a more plausible model of the world, and therefore a lower
combined weight placed on the extremes. Thus, in the model presented here,
unlike a model of learning with no new discovery, the combined weight on
the extremes need not increase over time.

11.5 Behavioral implications

The model presented here is very general, as is the alternative of a state-space
model with unbounded rationality. Hence, any behavioral test requires more
precise speci�cation of the maintained hypothesis, and associated auxiliary
hypothesis and the alternatives being tested. A natural choice of maintained
hypothesis is that, under unbounded rationality, preferences would obey sub-
jective expected utility for some appropriately updated Bayesian prior. We
may then consider tests of this hypothesis, with auxiliary hypotheses of vary-
ing strength, against alternatives requiring rejection of the joint maintained
and auxiliary hypotheses.
If states and probabilities are assumed to be known, then the maintained
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hypothesis becomes the standard von Neumann-Morgenstern model of EU
under risk, which may be tested for possible violations such as Allais common
consequence and common ratio e¤ects. However, this does not seem to be
a satisfactory test, since the combination of the maintained and auxiliary
hypotheses is too strong. Most analysts would prefer to explain Allais e¤ects
with reference to non-EU preferences, without discarding the whole idea of a
state space. However, as shown above, rank-dependent and NEO-EU models
may be interpreted as heuristic responses to incompleteness of the state space.
If the state space is assumed known, but probabilities are assumed to be

subjective, the maintained hypothesis becomes the Savage SEU model, which
may be rejected in favour either of probabilistically sophisticated alternatives
(by showing that the axioms of Machina and Schmeidler are satis�ed and then
testing EU for the implied probabilities ) or of models in which probabilities
are unknown or ambiguous using tests such as those proposed by Ellsberg.
Again, most analysts would not feel it necessary to abandon the idea of a
known state space in such cases, although the derivation of the multiple priors
model presented above suggests that this is one possible explanation.
Perhaps the most satisfactory test arises from considering the treatment

of unspeci�ed state spaces by Dekel, Lipman and Rustichini (2001). They
provide conditions under which the existence of a subjective state space with
EU may be inferred from choices over menus, even though neither the state
space nor the probabilities are speci�ed in the choice problem. Conversely,
given the maintained hypothesis of EU, an experimental rejection of the
conditions derived by Dekel, Lipman and Rustichini might be interpreted as
evidence that there exists no completely speci�ed state space.
In this paper, we have discussed the case of a single agent, focusing on

learning and discovery over time. However, the lattice structure adopted
here is similar to that of the multi-agent model developed by Heifetz, Meier
and Schipper (2006), who examine �interactive unawareness�(see also Heifetz
2006). Grant, Kline and Quiggin (2006) show that the ideas of bounded
rationality can be used to model ambiguity in contracting, giving rise to a
range of behavioral implications potentially observable in market settings.
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12 Concluding comments

Observation of, and introspection about, decision-making reveals many phe-
nomena that are excluded from standard decision-theoretic models. Plans
are revised, or abandoned, in the light of unforeseen contingencies. Beliefs
held with certainty are falsi�ed by events. New ideas arise spontaneously or
in response to the discovery that previous understandings of the world were
incomplete or unsatisfactory. In this paper, we have presented a framework
within which such phenomena can be modelled.
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Figure 1: Decision Tree for Electron Beam Experiment without Unconsidered
Possibility of Gamma Ray Emission.
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Figure 2: Tree for Electron Beam Experiment that Includes Possibility of
Gamma Ray Emission.
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Figure 3: A Coarsening of the Tree in Figure 2
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Figure 4: Direct (and Indirect) Mapping from tree � 00 to coarser tree � (via
tree � 0).
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