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1 Introduction

Most formal analysis of economic decisions under uncertainty has relied on concepts of
subjective probability. Significant advances in the discussion of preferences in the absence
of well-defined subjective probabilities, and in understanding the relationship between
preferences and subjective probabilities, have been made by Schmeidler (1989), Machina
and Schmeidler (1992), Epstein (1999), Epstein and Zhang (2001) and Ghirardato and
Marinacci (2002).

The analysis of economic decisions in the absence of well-defined subjective probabil-
ities has often been referred to in terms of Knight’s (1921) distinction between risk and
uncertainty. However, Knight’s discussion of the role of insurance companies and the Law
of Large Numbers makes it clear that his conception of risk was confined to cases where
objective probabilities can be defined in frequentist terms, and where risk can effectively
be eliminated through pooling and spreading. All other cases, including those where in-
dividuals possess personal subjective probabilities, were effectively classed by Knight as
involving uncertainty. The distinction now commonly drawn between ‘risk’ and ‘uncer-
tainty’ could not be developed properly until the formulation of well-defined notions of
subjective probability by de Finetti (1937) and Savage (1954).

The first writer to clearly identify cases where preferences were inconsistent with first-
order stochastic dominance, relative to any possible probability distribution, was Ellsberg
(1961) who distinguished between risk (subjective probabilities satisfying the Savage ax-
ioms) and ambiguity, leaving uncertainty as a comprehensive term. Therefore, consistent
with the usage of Savage and Ellsberg, and with usage in the general economics literature,
we will use the term uncertainty to encompass all decisions involving non-trivial state-
contingent outcome vectors, whether or not the preferences and beliefs associated with
these decisions can be characterized by well-defined subjective probabilities. Events for
which subjective probabilities are (respectively, are not) well-defined will be referred to as
‘unambiguous’ (respectively, ‘ambiguous’) and problems involving acts measurable with
respect to unambiguous events will be said to involve ‘risk’. Our usage is consistent with
Ghirardato and Marinacci (2002) and Epstein and Zhang (2001).

Epstein and Zhang (2001) provide a rigorous definition of ambiguous and unambigu-
ous events, and lay the basis for an analysis of preferences under uncertainty, including
both risk and ambiguity.! In light of this, the definition proposed by Epstein (1999) for a

I To the best of our knowledge, the only other definitions based solely on preferences are those provided by



comparative ambiguity aversion relation over preference relations can now be stated in a
solely preference-based and functional-form free manner. However, questions of when one
act is more uncertain or more ambiguous than another are not addressed in these analyses,
except in the polar case where one act is ambiguous and the other is unambiguous. Ghi-
rardato and Marinacci (2002) propose a model-free definition of comparative uncertainty
aversion: one preference relation is more uncertainty averse than another, if whenever the
latter relation expresses a weak preference for a constant act (that is, one that will yield
the same outcome no matter what state of the world will obtain) over another act, then
so must the former relation. They do not, however, consider the question of when one
act is more uncertain than another except in the polar case where one of the acts yields a
certain outcome.

By contrast, the concept of an increase in risk, and the economic consequences of
increases in risk, have been analyzed extensively, beginning with the work of Hadar and
Russell (1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970). These authors
independently derived and characterized the second-order stochastic dominance condition
(in terms of mean-preserving spreads), under which all risk-averse expected utility max-
imizers will prefer one probability distribution to another. Quiggin (1993) introduced
an alternative notion of monotone (mean-preserving) increase in risk, defined in terms
of co-monotonic random variables instead of mean-preserving spreads. Landsberger and
Meilijson (1994) pointed out that this notion of increase in risk coincides with the Bickel
and Lehmann (1976) notion of dispersion of random wvariables with equal means. Yaari
(1969) argued that since any lottery is by definition a ‘mean-preserving spread’ of its
mean, the weakest notion of risk aversion simply requires that the mean of a lottery for
sure is weakly preferred to the lottery itself. Subsequent studies examined a wide range of
generalizations of these stochastic dominance conditions, typically associated with more
restrictive conditions on utility functions. Other papers that have extensively analyzed
the concept of increasing risk in the context of generalized expected utility models include
Chew, Karni and Safra (1987), Chateauneuf, Cohen and Meilijson (1997), Grant, Kajii
and Polak (1992), Quiggin (1993) and Safra and Zilcha (1989).

Most concepts of increasing risk that have been considered in the literature are inher-

Sarin and Wakker (1998), Nehring (1999, 2001), Ghiradato and Marinacci (2002) and Ghiradato, Maccheroni
and Marinacci (2004). In other papers such as Gilboa and Schmeidler (1994), Mukerji (1997) and Ryan
(2002), the analysis focuses on a class of preference relations that admit a specific functional form. The
criteria for what constitutes an ambiguous or unambiguous event is then defined in terms of a property or
properties of the specific functional form representation that each of these preference relations admit.



ently dependent on the existence of well-defined subjective probabilities. This is obviously
true of mean-preserving increases in risk, since the mean depends on probabilities. Even
notions such as that of a compensated increase in risk (Diamond and Stiglitz, 1974), which
do not depend on mean values, incorporate probabilities in their definitions. Yet the in-
tuitive concept of an increase in the uncertainty of a prospect does not seem to depend
crucially on probabilities. To take a simple example, doubling the stakes of a bet surely
increases the uncertainty associated with that bet, regardless of whether the parties have
well-defined and common subjective probabilities regarding the event that is the subject
of the bet.

The main object of this paper is to examine concepts of increasing uncertainty, that
are independent of any notion of subjective probabilities. A natural starting point is to
consider whether existing concepts of ‘elementary mean-preserving increases in risk’, such
as monotone spreads and Dalton transfers yield useful results when reference to proba-
bility distributions and means is dropped. We show that the monotone spread concept
is robust to this generalization, but that concepts based on Dalton transfers, including
the Rothschild-Stiglitz definition of increasing risk, have no content in the absence of well-
defined probabilities. More precisely, the transitive closure of the analog of the Rothschild-
Stiglitz definition turns out to be the trivial total ordering that includes every ordered pair
of acts.

Any definition of increasing uncertainty naturally gives rise to a dual definition of
comparative aversion to uncertainty. We characterize this definition for a popular class of
generalized models of choice under uncertainty.

Proofs of the results, unless otherwise stated, appear in the appendix.

2 Preliminaries

Set-up and Notation. Denote by S = {..., s,...} a set of states and £ = {... ,A,B

., E,...} the set of events which is a given o-field on §. We take the set of outcomes to
be the set of non-negative real numbers, or ‘consumption levels’. An act is a (measurable)
real-valued and bounded function f: & — R,. Let f(S)={f(s) | s € S} be the outcome
set associated with the act f, that is, the range of f. Let 7 ={... ,f,g,h,...} denote the
set of acts on §; and let Fy denote the set of simple acts on S; that is, those with finite
outcome sets. We will abuse notation and use x to denote both the outcome z in R, and
the constant act with f(S) = {z}.



The following notation to describe an act will be convenient. For an event F in £, and
any two acts f and g in F, let frg be the act which gives, for each state s, the outcome
f(s)if sisin F and the outcome g (s) if s is in the complement of E (denoted S\ FE).

In general, for any finite partition P := {A!, ..., A"} of S and any list of n acts (h',...,
K™, let bl h?, .. 71 h™ be the act that yields b (s) if s is in A",

Let ~ be a binary relation over F, representing the individual’s preferences. Let > and
~ correspond to strict preference and indifference, respectively.

Given 7, for any act f in F, we define the ‘at least as good as f’ set as the set
Zr={9eF 92 [}

An event E is deemed null for the preference relation -, if for all f and g in F, fgg ~ g.

We say a sequence of acts f, converges in the limit to f in the topology induced by the
sup-norm, written f, — f, if, lim, oo sUp,es |fn () — f(s)| = 0.

The only maintained assumptions we make on this preference relation is that it is a

continuous preference ordering and satisfies a weak form of monotonicity.

Axiom 1 The preference relation 7 is a continuous weak order: that is, it is transitive
and complete and, for any of sequences of acts {f,) and {g,), such that f, — f and g, — g,
if fu 72 gn for all n, then f 7 g.

The following monotonicity axiom weaker than what is usually assumed is sufficient

for our purposes.

Axiom 2 The preference relation - is monotonic. That is, if for any pair of acts, f and
gmF, f(s)>g(s)+e, withe >0, for all s in ), then f > g.

We can prove that any preference relation 7~ on F satisfying the axioms above may be

characterized by a unique certainty equivalent of the form
m(f) = sup{e € R. : f 7 z}.

2.1 An elementary increase in uncertainty

Under what circumstances may we view one act as being more uncertain than another?
Given a probability measure exogeneously defined over the state space, it seems uncontro-
versial to denote any act as more risky than the constant act which yields the mean outcome

of that act (evaluated according to that probability distribution) in every state. Other



statistical partial orderings, such as second-order stochastic dominance or the Rothschild-
Stiglitz definition of more risky, can also be invoked. However, in the absence of exo-
geneously given probabilities, it seems more natural to build up a ‘more-uncertain-than’
partial ordering over acts by considering the simplest operation that can be performed on
an act that unequivocally increases the uncertainty associated with that act. The most
elementary operation that we believe unequivocally increases the uncertainty associated
with an act, is one that involves adding an ‘elementary bet’ to that act. The addition
of an elementary bet increases consumption by a fixed amount in the (relatively) ‘good’
states and decreases consumption by a fixed (and possibly different) amount in the (rela-
tively) ‘bad’ states. We refer to the addition of such a comonotonic elementary bet as an

elementary increase in uncertainty.

Definition 1 Fix a pair of acts f,g € F. The act g represents an elementary increase in
uncertainty of the act f, denoted gU f if there exists a pair of positive numbers a and 3,
and an event Et € E\{S,0} such that: (i) for all s in E*, g(s) — f (s) = a; (i) for all s
in S\ET, f(s)—g(s)=0; and (iii) sup{f (s): s € S\ET} <inf{f(s):s€ ET}.

Correspondingly, we define a notion of comparative uncertainty aversion:

Definition 2 Fixz —~ and % The preference relation 7 is at least as uncertainty averse at
f as = if for any gUf, f = g implies f = g. The preference relation 7 is everywhere at

least as uncertainty averse as 7~ if for all f, 7~ is as least as uncertainty averse at f as 7.

~

Notice that in the definition of an elementary increase in uncertainty there is no control
made for “mean effects” as is usually the case for standard definitions in the context of
exogeneously specified risk. This is because from the underlying primitives there is no way
to define independently of preferences what is the mean of a elementary bet. Different
individuals will find different elementary bets favorable or unfavorable depending on the
context in which it takes place (that is, the ‘base’ act to which it is added) and their
underlying preferences (which embodies their subjective assessment about the relative
likelihood of different events obtaining.) In this context, if we see that whenever one
individual finds unacceptable an elementary bet that has positive payoff in good states
and negative payoffs in bad states then so does the other individual, then we refer to the
latter as at least as uncerainty averse as the former. So for example, if 7~ is at least as
uncertainty averse as %, then 100450 % 1000449 requires 100450 =~ 1000,49. That is, if %



with base contingent wealth 100,450, finds the elementary bet (on the event A) of 9004 (—1)
unacceptable, then so should . On the other hand, if % finds the bet acceptable, then
~ may or may not find it acceptable since the definition is silent (at least directly) on the
preference going one way or the other.

We can still define, however, a notion of revealed uncertainty neutrality. The underlying
idea is that if an individual reveals a willingness to accept an elementary bet added to a
particular base act, then if she is uncertainty neutral she should be willing to accept that

same elementary bet added to any act.

Definition 3 Fiz —. The preference relation = exhibits uncertainty neutrality if for any

gUf, gz [ implies g’ 72 [’ for any ¢, [ satisfying ' — f' =g — f.
Correspondingly, we define a notion of absolute uncertainty aversion:

Definition 4 Fiz =. The preference relation - is uncertainty averse if there exists a
= and

~ !

preference relation = for which - is everywhere at least as uncertainty averse as

% exhibits uncertainty neutrality.

It is straightforward to see that uncertainty neutrality implies that, loosely speaking,
the set of acceptable bets from a given act is the same no matter which act one starts with.
If the state space is finite, then the only preference map over state-contingent wealth which
satisfies this property is one in which the indifference sets are parallel hyperplanes and
an analogous property holds for infinite state spaces. Intuitively, this means uncertainty
neutrality is equivalent to saying the preference relation admits a subjective expected value

representation. Formally, we have:

Proposition 1 The preference relation - exhibits uncertainty neutrality if and only if
it admits a subjective expected value representation. That is, there exists a probability
measure m defined over £ , such that

froe / F(s))m (ds) > / g(s))m (ds)

8

Hence a preference relation 7~ is deemed uncertainty averse if it is more uncertainty
averse than some subjective expected value maximizer.
In the next section we shall explore the implications of this definition both for sequences

of bets and for particular classes of preferences.



3 Increases in uncertainty and uncertainty aversion

Our first observation about the definition of an elementary increase in uncertainty is that,
no matter what assessment an individual attaches to any event (that may incorporate his
or her belief and/or decision weight), an elementary increase in the uncertainty of a given
act f always reduces consumption in the worst event and increases consumption in the
best event. Furthermore, if gU f then g, f and the function g— f are pairwise co-monotonic

functions. That is, for every pair of states s,t € S,

(g(s) =g @) (f(s)—f(t) =0
(g(s)=f(s) =g+ f@)(f(s)—f(t) =0

(g(s) =g @) (g(s) = f(s)—g@®)+f(t) =0

As nothing in the above inequalities require the differences in question to be simple, we
shall adopt these inequalities to define the more uncertain relation between any pair of

acts.

Definition 5 Fix a pair of acts f,g € F. The act g is more uncertain than the act f,
denoted gU f, if there exists a real-valued function h on S, comonotonic with f such that
suph >0, infh <0 and g= f+ h.

Our main result in this section is that the relation U is simply the transitive continuous

closure of the relation U.

Proposition 2 Fiz a pair of acts f,g € F. If gUf then there exist sequences of simple
acts, {fn) and {gn), such that f, — f and g, — g , and for each n there exists a finite
sequence of stmple acts <h”m>ﬂ]\£1, such that hY = fn, Wy = gn and h,, Uh;,, m =
1,...M" —1.

The following is an immediate corollary of Proposition (2).

Corollary 3 Fiz ~ and % The preference relation 7 is everywhere at least as uncertainty

averse as =, if and only if,

f%g implies f =~ g for all gUf.



Also, we obtain
Corollary 4 Any act f is more uncertain than its certainty equivalent m(f).

Corollary 5 If 7~ is everywhere at least as uncertainty averse as %, then for any f

m(f) < m(f).

From Corollary 5 it follows that if 7~ is everywhere at least as uncertainty averse as %
then ~ is more uncertainty averse than =~ in the weaker sense of the following definition
proposed by Ghirardato and Marinacci’s (2002): the preference relation 7~ is more (weakly)

uncertainty averse than % if for any act f and any constant act x,
xifﬁx%fandx>f:>x§f

Ghirardato and Marinacci argue that their definition only relies upon the weakest
prejudgement about what constitutes an unambiguous act, namely one that yields a given
outcome for certain. Our definition encompasses this but goes further. Our rationale is
that adding to an act a comonotonic simple bet should be considered by construction to
have increased its uncertainty. Hence the natural definition for comparative uncertainty is
the stronger one we propose in which a comonotonic simple bet being viewed unfavorably
by an individual should entail that it is viewed unfavorably by any other individual who
is more uncertainty averse.

Epstein (1999) proposed a definition of comparative ambiguity aversion that explicitly
controled for ‘risk aversion’. He did this by assuming that there was a rich set of exoge-
neously defined ‘unambiguous events’ A C &, that was closed under complementation and
union. Any act that was measurable with respect to A was deemed an unambiguous act.
The preference relation 7~ is more ambiguity averse than % if for every unambiguous act

h and every act f
h=f=h>fandh=f=hs f

Adopting Epstein and Zhang’s (2001) purely behavioral definition for an unambiguous
event, allows the outside analyst to compare two preference relations according to Ep-
stein’s definition without having to assume a prior: which events are ambiguous or unam-

biguous.? We do not deny the usefulness of such an isolation of ambiguity aversion from

2 Epstein and Zhang (2001) define an event 7' to be unambiguous if (a) for all disjoint subevents A, B C
S\T, acts h, and outcomes z*, x, 2,2/, X xpzrh = xax’hzrh implies ¥ xp2l-h = xax’zzirh and (b) the
condition obtained if T" is everywhere replaced by S\T in (a) is also satisfied. Otherwise, T" is ambiguous.

8



risk aversion where it can be achieved. But in circumstances where such a separation is
not feasible, we believe there are useful insights and economic implications that can be
drawn when comparisons according to the ‘total’ uncertainty aversion are made according

to our definition of relative aversion to the addition of simple comonotonic bets.

3.1 Special cases

The definitions of comparative uncertainty, and of comparative uncertainty-aversion, pre-
sented above, do not depend on any specific features of the form of representation that a
family of preference relations may or may not admit. It is of interest, however, to consider
the case when preferences may be represented by some specific model, to characterize the
relationship ‘7~ is everywhere at least as uncertainty averse as %’ in terms of the parame-
ters of that model, and, where appropriate, to compare that characterization to existing
results on comparative risk aversion. We begin by demonstrating that the usual charac-
terization of comparative risk aversion for subjective expected utility is consistent with
our definition. More substantively, we analyze the cases of disappointment aversion (Gul
1991), and of Choquet Expected Utility preferences (Schmeidler 1989), incorporating such
important special cases as rank-dependent expected utility under risk (Quiggin 1993) and
the dual model of Yaari (1987).

3.1.1 Subjective Expected Utility

Let us consider the case when ~ and % satisfy the assumptions of Savage’s theory of subjec-
tive expected utility (SEU). That is, assume both preference relations can be represented

by certainty equivalent functionals m, m of the form

m(f)=u" ( / u(f (s) <ds>) and A(f) =7 ( / a(f (s))7 <ds>) ,

where m and 7 are countably-additive and convex-ranged probability measures defined over
&, and v and u are von Neumann-Morgenstern utility functions defined over X.

The same set of necessary and sufficient conditions that are required for one preference
relation to be at least as risk averse (in the sense of Rothschild and Stiglitz, 1970) as
another are also necessary and sufficient for one to be at least as uncertainty averse as

another.

Proposition 6 Suppose ~ and % both admit SEU certainty equivalent representations

~

m () and m(.), with associated probability measure and utility function pairs, (w,u) and

9



(7, w), respectively. Then, - is everywhere at least as uncertainty averse as % if and only

ifm(A)=7(A) for all A € &, and u is a concave transform of u

That is, under SEU, “more uncertainty averse” reduces to “common beliefs and more
risk averse”. An immediate corollary of Proposition (6) is that a necessary and sufficient
condition for an SEU-maximizer to be averse to monotone mean-preserving spreads, that
is, he is more uncertainty averse than the subjective expected value maximizer with prob-
ability distribution =, is that his utility function is concave. And without requiring any
other restrictions, we also know that his preference relation would agree with the partial
ordering of second-order stochastic dominance (or equivalently, he is averse to all mean-
preserving spreads). These results are not surprising since it is well-known that under the
expected utility model for decision making under risk (with exogenously specified proba-
bilities) a decision maker is risk-averse in the weakest sense of always (weakly) preferring
the mean of a lottery for sure to the lottery itself if and only if his utility index is concave.
Such a coincidence of conditions necessary and sufficient for these three distinct notions of
risk aversion (and their uncertainty analogs) does not hold in general for non-EU models
of decision making under risk and non-SEU models of decision making under uncertainty.

This point is illustrated by the following examples.

3.1.2 Disappointment Aversion

Disappointment aversion (Gul 1991) is the most widely used non-EU model displaying
the “betweenness property” (see Chew 1983, Dekel 1986). In the context of the Savage
framework a subjective disappointment aversion (SDA) functional representation, V (f)

may be implicitly defined by the equation
S e(nf @),V () =0.

z€ER

where
p(E)1—=0)(u(z)—v) ifu(z)=>v

uw(E) (u(x)—v) ifu(zx)<wv
where p (.) is a probability measure defined on &,

u (.) is an increasing (utility) index and b < 1.

10



Notice that SEU is the special case in which b = 0. Gul implicitly assumes common
subjective beliefs (i.e. m = ).

Gul (1991, Theorem 5, p676) shows that if b > b and u is a concave transformation
of u then - is at least as risk averse (in the Yaari sense) as %, that is, m(f) < m(f) for
every f. It is straightforward to find counter-examples demonstrating that the converse
does not hold.

As was the case for SEU, the same set of necessary and sufficient conditions that are
required for one SDA preference relation to be at least as risk averse (in the sense of
Rothschild and Stiglitz, 1970) as another are also necessary and sufficient for one SDA
preference relation to be at least as uncertainty averse as another. To obtain a characteri-
zation of the necessary and sufficient conditions for comparative risk aversion in the sense

of Rothschild and Stiglitz it is useful to define the following property

Definition 6 (Unboundedness) For any act f, outcome ¢ and non-null event E, there

exists an outcome d sufficiently large that
m (fed) > c

For the class of unbounded SDA preferences we can show the following equivalences
hold.

Proposition 7 Suppose 7~ and % both satisfy Unboundedness and admit subjective disappointme
aversion representations characterized by the two probability measure, utility function and
disappointment parameter triples, (m,u,b) and (ﬁ, ﬂ,g), respectively. Then, assuming -

and % are distinct, the following three statements are equivalent:

1. 7 is everywhere at least as uncertainty averse as =~;

o~

2. = is at least as risk averse (in the Rothschild-Stiglitz sense) as =—;
3. w(A)=a(A) for all A € &, u is a concave transform of u, b > b=0

Notice in particular, that statement three of Proposition 7 implies that comparisons
of uncertainty aversion and hence comparisons of risk aversion in the Rothschild-Stiglitz
sense are only possible when one of the preference relations is SEU. This result does not
depend on the existence of ambiguous events, and may therefore be seen as a limitation

of SDA as a model of choice under risk.

11



3.1.3 Choquet Expected Utility

The other main direction for generalizing sub jective expected utility has been the so-called
“rank-dependent theories” of which Choquet Expected Utility (CEU) is the most widely
applied. Associated with a CEU representation is an increasing utility index v : X — R
and a capacity, v where a capacity is a function v : £ — [0, 1] satisfying (i) for all A, B in
E v(A) <v(B), (ii) for any v (§) = 0; and (iii) v (S) = 1. For such a CEU-maximizer
f = g if and only if

/ v ({s:u(f(s) 2wp)—v({s:u(g(s)) > w})|dw >0 (1)

o0

In the context of decision making under risk, where preferences are defined over lot-
teries, Chateauneuf, Cohen and Meilijson (2004) provide a complete characterization for
a Rank-Dependent Expected Utility (RDEU) maximizer to be averse to all monotone
mean preserving increases in risk. To adapt their result to the subjectively uncertain act-
framework fix a pair of CEU maximizers (u,v) and (u,v). We shall assume throughout
that both w and w are continous and increasing. Furthermore, analogous to the non-atomic
subjective beliefs for the case of subjective expected utility we shall also assume that both
capacities v and ¥ are convex-valued, that is, for every w € (0, 1), there exist events A and
B, for which v (A) =0 (B) = w. Let

b f (1-v(E))/v(E)
U pesommay (1 — v (B)) /v (E)

denote the index of relative pessimism of the capacity v over the capacity . We shall say
the capacity v is relatively pessimistic compared to the capacity v if the latter is majorized
by the former, that is, v (E) <V (F), for all E € &, or equivalently, F, 5y > 1. Let

Gy ) —u(@)]/ A () —a (@)
0 = e s (%) —u (2)] / [ (22) — @ (2))]

denote the index of relative greediness of the utility function w over the utility function .
This index satisfies G5y > 1 and will equal 1 if u is a monotonic concave transformation
of #. When u and 4 are differentiable, it is the supremal value of v’ (z) @ (y) / [w' (y) @ (x)]
taken over x > y.

Relying heavily on Chateauneuf, Cohen and Meilijson’s (2004, Theorem 1) characteri-

zation result we obtain the following characterization.?

3 A model that is closely related to CEU is cumulative prospect theory (CPT). It is more general as

12



Proposition 8 A CEU maximizer, (u,v), is at least as uncertainty averse as another
CEU maximizer, (u,V) if and only if her index of relative pessimism exceeds her index of

relative greediness: Py 2> Gua)-

One implication of this result is that a CEU maximizer with a non-concave utility index
can be more uncertainty averse than a Yaari-CEU maximizer (that is, a CEU maximizer
with a linear utility function) or even a CEU maximizer with a strictly concave utility
index provided the degree of ‘pessimism’ embodied in his capacity, as measured by the ratio
(1—v(F))/v(F), is sufficiently strong enough to outweigh any region of non-diminishing
marginal utility. Again, this accords with similar results derived in the context of decision
making under risk for RDEU maximizers. And we obtain the following characterization

for an uncertainty averse CEU maximizer.

Corollary 9 A CEU maximizer, (u,v), is uncertainty averse if and only if there exists a

probability measure w, for which

— v (E)) /l/ Eg) > sup U x4) —u (x3)} / [x‘l — xs}

T alcazegtags [U(2%) —u(2h)]/ [2? — 2]

inf
{EEE:Ol?ﬁ(E)<1} (1—n(E))/m

3.1.4 Biseparable Preferences

All the families of preferences considered so far are themselves special cases of the class
of preferences Ghirardato and Marinacci (2001) dub biseparable. Essentially this is the
class of preferences relations whose restriction to the set of acts that are measurable with
respect to a two-element partition of the state space admits a CEU representation. That
is, 7~ is biseparable if there exists an increasing utility index v : X — R and a capacity, p,
such that for any (A, B) € £ x £ and any (w, z,y,2) € R*, such that w > z and y > z,

waz Zypz <= p(A)v(w)+[1—p(A)v(z) > pB)v(y)+ 1 - p(B)v(z).

As Ghirardato and Marinacci observe, this is the most general model achieving a sep-
aration of ‘cardinal’ state-independent utility and a unique representation of beliefs. Not
only does it encompass, SEU, SDA and CEU but Gilboa and Schmeidler’s (1989) ‘maxmin

expected utility’ (or ‘multiple priors’) is included in this class. In the multiple prior model,

it allows for reference-dependence. Utility is defined on deviations from a ‘status-quo’ outcome and the
capacity exhibits ‘sign-dependence’, depending on whether the best outcome on an event is better or worse
than the status quo. But modulo the necessary adjustments for reference-dependence, analogous results to
the ones we derive for the CEU model hold for CPT.
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the preference relation admits a representation consisting of an increasing utility function
u and a convex set of ‘prior’ probability distributions II, so that

f = g ¢ min / u(f(s)) (ds) > min / w(g(s))m (ds)

s w€ll

Clearly, setting v (z) ;= u (z) and p (F) = min,en 7 (F), yields the biseparable representa-
tion.

Now since the proof of the necessity part of Proposition (8) in the Appendix only
utilizes acts that are measurable with respect to some two-element partition of the state

space, we have the as an immediate corollary of Proposition (8) the following.

Corollary 10 A necessary conditon for one preference relation 7~ that admits a biseparable
representation (v, p), where p is conver-valued and u is continuous and increasing, to be

at least as uncertainty averse as another preference relation % that admits a biseparable
representation (v, p), where p is convex-valued and v is continous and increasing, is that
Pl 2 G-

Whether this is also sufficient for the various sub-classes of biseparable preferences is
an open question. In particular, we do not know whether it is sufficient for the multiple
prior model. It is sufficient for SEU, the condition entails that F, ) = 1, and moreover,
that 7 (E) = @ (F) for every event E, hence G, 4 = 1, which recall implies that u is a
concave transformation of w. It is not sufficient for SDA, as we saw sufficiency required

that at least one of the two preference relations was SEU.

3.1.5 Subjectively Ambiguous and Unambiguous Events

A further particularly interesting application of Proposition (8), is in the context of Epstein
and Zhang’s (2001) model of a CEU maximizer, (u, V), for whom, just from the behavioral
implications of the preference relation, an outside analyst is able to classify each event
as being either ‘ambiguous’ or ‘unambiguous’ for that preference relation. Let £V4 C &,
denote the set of unambiguous events for (u,r). The set of axioms that they impose on
the preference relation guarantees that the set of ‘unambiguous’ events is rich enough so
that ‘beliefs” over these events can be represented by a countably additive, convex-valued
probability measure 7 : EY4 — [0,1]. Moreover, for each A € V4, v (A) = ¢ (7 (A)), for
some strictly increasing and onto map ¢ : [0, 1] — [0, 1]. Hence for any (measurable) finite

partition, (A',...,A"), and for all acts of the form f = zl,2%,...2%. 2" for which z' >
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. > x", the certainty equivalent function, m (f) for the CEU maximizer, (u,v), is defined
by:

m(f)=u"' (i (u (:Jc’) v (U;ZlAj) —u (:Jc’) v (U;llAJ))> .

i=1

Furthermore, if for each i = 1,... ,n, A* € £Y4, then f is an unambiguous act and

m(f)=u’ (Z (u(') 6 (m (Uja &%) —u(a') 6 (n (UHAJ')))> :
i=1
If we take another such CEU maximizer (u,7), for whom 54 = £ (that is, every event is
unambiguous for this individual) and 7 (A) = v (A) for every A € £V4, then by construction
the two CEU maximizers, (u,v) and (u,V), agree over any pair of acts that are measurable
with respect to £74. Furthermore, since every event is unambiguous for (u,?), this CEU-
maximizer is probabilistically sophisticated in the sense of Machina and Schmeidler (1992),
and so corresponds to Epstein’s (1999) notion of an ambiguity neutral preference relation.
Thus there exists a countably additive, convex-valued probability measure, 7 that extends
wto &. Thatis, forany F € £,V (F) = ¢ (7 (E)), and for any (measurable) finite partition,
(A',...,A"™), and for all acts of the form f = zl,2%,...2%, 2" for which ' > ... > 2",
the certainty equivalent function, m (f) for the CEU maximizer, (u, V), is defined by:

m(f)y=u" (271: (u(z) 7 (U AY) —u(z) D (UgﬁlAjl))>

i=1

- (Z () 6 (7 (U1 4)) —u () 6 (7 <uz‘-1Aﬂ>>>)-

i=1

According to Epstein’s (1999) definition, (u,v) is ambiguity averse if for any pair of

acts f and h, such that h is measurable with respect to £/4,
m (h) =2 m (f) implies m (h) = m (f).
Epstein and Zhang (2001) show that (u,v) is ambiguity averse if and only if
T(E)>6¢ ' (v(E)) forall E€&.

The following corollary to Proposition (8) establishes the connection of our definition of

more uncertainty averse to Epstein’s (1999) definition of ambiguity averse.
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Corollary 11 Let - and % be preference relations corresponding to the CEU-maximizers
(u,v) and (u,V) defined above. Then (u,v) is ambiguity averse in the sense of Epstein

(1999), if and only if - is more uncertainty averse than %

From this corollary we can conclude that a CEU-maximizer is ambiguity averse in
the sense of Epstein (1999) if and only if there is a probabilistically sophisticated CEU-
maximizer, such that: (a) the two preference relations agree over the set of unambiguous

acts; and (b) the former is more uncertainty averse than the latter.

4 Alternative notions of elementary increases in risk
and uncertainty

The definition of an elementary increase in uncertainty presented above is the simplest
possible. As we have shown, its transitive closure is a monotone spread. This result also
holds under risk (see Quiggin, 1993). There are, however, a wide range of alternative
notions of increasing risk. Chateauneuf, Cohen and Meilijson (2002) give a summary, and
their discussion suggests a systematic procedure for generating various classes of increases
in risk as the transitive closure of appropriate notions of an elementary increase in risk. In
addition to monotone spreads, Chateauneuf, Cohen and Meilijson consider the Rothschild-
Stiglitz mean-preserving riskier ordering and two intermediate orderings, referred to as
left-monotone and right-monotone increases in risk.

In the case of risk, these intermediate orderings can be generated as transitive closures of
elementary increases in risk based on the following notion of three-event ordered partitions

of the state space.

Definition 7 Fiz an act f. The N-event partition {E',... ,EN} of S is ordered with
respect to f if foralln=1,... ,N—1

sup{f(s):s€ E"} Sinf{f(s):sEE"fl}.

Definition 8 An act g is a elementary left-increase in uncertainty on f if there exist
numbers o and 3 and a 3-event partition {E', E* E®} that is ordered with respect to f
and g, such that

f(s)—B3 seE!
g(s)=< f(s)+a se€E?
f(s) se F?
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Definition 9 An act g is a elementary right-increase in uncertainty on f if there exist
numbers o and 3 and a 3-event partition {E', E* E®} that is ordered with respect to f
and g, such that

f(s) s € FE!

g(s)=49 f(s)—B s€kFE?
f(s)+a se€E?

Definition 10 An act g is a monotone increase in uncertainty on f if there exist numbers
a and 3 and a 3-event partition {E', E?, E*} that is ordered with respect to f such that
f(s)— 3 seE!

g(s) =4 f(s) s € E”
f(s)+a se€E?

As the terminology suggests, if g is a monotone increase in uncertainty on f, then g is
more uncertain than f in the sense of Definition 5. Indeed, for any v < min («, 3) , we can
generate a monotone increase in uncertainty from the sequence of elementary increases in
uncertainty, h! = f, h%(s) = f(s) = B8+, s € E*, h%(s) = f(s)+ v, s € E?UE® h® =g,
that is % (s) = h%(s) —v,s € EYUE? h?(s) = h*(s) + o — v,s € E°.

Using the results of Chateauneuf, Cohen and Meilijson (Lemma 2, p11), it is straight-
forward to show that, if we assume known probabilities, and add the requirement that
g has the same expected value as f, the transitive closure of the class of elementary
left-(respectively, right-)increases in uncertainty on f is the class of acts that are ranked
left-(respectively, right-)monotone more riskier than f. Also observe that an elementary
increase in uncertainty satisfies each of the definitions 8 , 9 and 10 with the ‘unchanged’
event being empty.

Now consider potential notions of elementary increases in uncertainty of an act with
respect to a four-event ordered partition. The only elementary operation that is (i) mea-
surable with respect to a four-event partition, (ii) does not include an increase on E¢ and
a reduction in E’, for all j > ¢, and (iii) cannot be generated by a finite sequence of any

of the elementary increases considered above, is the following.

Definition 11 An act g is an elementary conditional-increase in uncertainty on f if there
exist numbers o and 3 and a 4-event partition {E', E?, E®, E*} that is ordered with respect
to f and g, such that

f (s se E!

_ ) f(s)—B scFE?
9(s) = f(s)+a se€E?
f (s se E*
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Observe that elementary, left-elementary and right-elementary increases in uncertainty
are all special cases of elementary conditional-increase in uncertainty. Moreover, if we
assume known probabilities, and add the requirement E [g] = E [f], the transitive closure
of the relation ‘g is derived from f’ by an elementary conditional-increase in uncertainty’
is the relation ‘g is mean-preserving riskier than f’ in the sense of Rothschild-Stiglitz.

Our main result in this section is that no such relationship applies under uncertainty.
In fact, if we suppose that the state-space is sufficiently rich, in the sense that there are
no “atoms” in the state space, then it follows that the transitive closure is the trivial
total ordering, which includes every ordered pair of acts. That is, suppose we require in
addition to the other maintained assumptions that the preference relation satisfies Savage’s

postulate small-event continuity.

Definition 12 The relation 7, exhibits small event continuity if for any pair of acts f = g,
and any outcome x, there exists a finite partition of the state space {El, ..., EYN } such

that xpnf = g and f = zgng for everyn=1,...,N.

Proposition 12 Suppose 7~ exhibits small event continuity. The transitive closure of the
relation ‘g is derived from f by an elementary conditional-increase in uncertainty’ is the
full relation R in which, for all pairs of act f and g, gRf and fRg.

Thus, there is no non-trivial analog under uncertainty for the Rothschild-Stiglitz notion

of an increase in risk.

5 Conclusion

Most economic analysis of choice under uncertainty, and particularly of increases in uncer-
tainty, has been based on the assumption that decision-makers have well-defined subjective
probabilities. On the other hand, the fundamental result of the literature, the proof of exis-
tence of equilibrium in state-contingent markets derived by Arrow and Debreu (1954), does
not require decision-makers to possess subjective probabilities or to satisfy the postulates
of any model specific to problems involving uncertainty.

In this paper, we have shown that some, but not all, of the concepts that have been used
in the case of known probabilities can be extended to the more general and realistic case
of unknown probabilities. Broadly speaking, concepts that are most naturally expressed

in state-continent terms, such as statewise dominance and monotone spreads, are robust.
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Concepts that are most naturally expressed in terms probabilities or cumulative probability
distributions, such as notions of stochastic dominance, are unlikely to be robust.
Appendix

Proof of Proposition 2.

We first establish the following lemmas.

Lemma 13 If for any pair of stmple acts g and f, any pair of positive real numbers, o

and 3, and any three element partition of S, (E_1, Ey, E1) , we have

a ifseF
g(s)—f(s)= 0 fsekE
-0 ifseFE 1
then there exists a simple act h for which gUh and hU f.

Proof: If a > 3/2 then define

(

fs)+a—-08/2 iftseF
h(s) = f(s)—8/2 ifse Ep

fF(s)—3/2 itseE,.

Notice that

ﬁ/2 ifts e By U Ey Oé—ﬁ/2 if s € By
g(s)—h(s)= and h(s) — f(s) =

-B8/2 ifscE, —8/2 ifseE,UE,

as required. If a < 3/2 then define

(

f(s)+a/2 it s € By

h(s)= f(s)+a/2 ifseFE,

f(s)—B+a/2 itse F_;.

\
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Now we have

a/2 if s € By a/2 if s € By U Ey
g(s)—h(s)= and h(s) — f(s) =
—Oé/2 ifse BgUE_ —ﬁ+a/2 ifse BE_q.

Lemma 14 If for any pair of simple acts f and g, gU f then there exists a finite sequence
of simple acts <hm>ﬂ]\f:1 such that hy = f, hyy = g and hypp  Uhy,, m=1,.. . M — 1.

Proof: From the definition of gUf it follows that g — f is pairwise co-monotonic with
both g and f. Let [E_,,..., Eq, Eo, E1, ..., Er] be the coarsest partition of S for which
g — [ is measurable and with the labelling monotonically ordered, that is for any ¢ > 7,
and any s € E; and s’ € Ej;, g(s) — f(s) > g(s') — f (s). Moreover, assume that for any
1< 0,and any s € E;, g(s) — f(s) <0;. for any ¢ > 0 and any s € E;, g(s) — f (s) > 0;
and for any s € Ey, g(s) = f (s) Eo may be empty, but since inf.cs g (s) < infses f (s) and
SUDgcs g (S) = SuPyes f (s) it follows that 7 > 1 and J > 1. Foreach ¢ = —J,...,0,...,],

and some s; € E;, set d; :== g (s;) — f (s;). By construction, we have
df,]<d7,]+1 <...<d71 <d0=0<d1 <...<d[.

Let hy := f. Define
f(8)+d1 ifse BFHUEU...U Ef
hs (s) = f(s) if s € Fy

f(S)—Q—dfl ifse F{UEU...U E_;.

\
Fori=2,... ,min{l,J} — 1, define

(

hgifl(s)—ﬁ—di—difl ifse B;U...U E;
h2z’+1 (5) = hoi 1 (S) if s e Eflurl U...U EgU...U E;;
hai—1 (S) +d_; — dflurl ifse E_;U...U E_;.
\
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I>J, then for ¢ = J,..., I, define

hgifl(s)—ﬁ—di—difl ifse B;U...U E;
h2¢+1 (5) = hoi 1 (S) if s € Ef.]Jrl U...U EgU...U E;;
hoi 1 (S) -+ (d,.] — df.]Jrl) / (I —J+ 1) ifse E_j;.
\

Notice, in this case hor 1 = g¢.
If, however, I < J, then fort=1,...,J, define

(

hoi 1 (S)—Q—(d[—d[fl)/(J—I—ﬁ—l) if s € Ey
h2z’+1 (5) = hoi 1 (S) ifs e Eflurl U...U EqU...U Er
hai—1 (S) +d_; — dflurl ifseEF;U...U E_;
\

and now hoy 1 = g.
For each : = 1,... ,max{[l, J}, it follows from Lemma (13) that there exists a simple
act ho; for which ho; 1Uho; and ho;Uho; 1. Hence we have

g = h2max{1,J}+1 Uh2max{1,.J}U- Uh = f

as required.

We are now in a position to prove the proposition. Let f,, and h,, be the usual uniform
simple approximations from below of f and h; for n large enough sup h,, > 0 and inf h,, < 0.
Moreover, as noted in Chateauneuf, Cohen and Meilijson (1997), f and h comonotonic

implies that f,, and h,, are comonotonic, and therefore result follows from Lemma (14). B

Proof of Proposition 6.

Sufficiency is obvious. For necessity of the equality of 7 and 7, consider choices in a
neighborhood of a constant act z. For any real-valued function d : S — R and sufficiently
small e > 0, the certainty equivalent of the act £+ ed (in the neighborhood of ) under m

is approximately

T+e /d(s)ﬂ (ds)

and, similarly for m, the certainty equivalent is
r+e /d(s)ﬁ (ds).
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It w(F) > @ (F) for some E C S then
7w (F) T(E) 6

I—7(E) 1-7(E) (=n(E)(-7(E)
for some 6 > 0. Thus if we take

1-7(E)—6 ifs€E
d(s) =

—-T(B)—-6 ifs¢FE,
then for any ¢ > 0 we have

8/d(s)7r (ds) >0 > 8/d(s)ﬁ (ds)

and z+ed U z. So for sufficiently small & > 0, it follows from continuity and monotonicity
of 7~ and %, that = = (z + ed) but (z + &d) > .

To demonstrate the necessity of u being a concave transformation of u, suppose the
contrary, that is, u is not a concave transform of 4. Then there must exist utility levels

v1, v9 and wvs in the range of u, and A in (0, 1), such that
Avi+ (1= N)vs =,
Mol Y+ (1 —Nuow F(vs) >uou *(v).

Since 7 is non-atomic, there exists an event £ C S for which 7 (F) = A. So consider the
act f:=u ' (v1),u ! (vs) and the constant act z :=u ! (v2). By construction we have f
Uz,z fand f > x [ |

Proof of Proposition 7.

Proof: (3) = (2) = (1) is straightforward

Hence, we need only prove (1) = (3). The proof is in two parts. We first show that
(1) requires m (A) = 7 (A) for all A € £, u is a concave transform of u, and then that (1)
requires b > b=0.

Part 1.

We consider acts f with the property that there exists a neighborhood [m(f) — 26, m(f) + 26]
of m(f) that is not in the support of f. Call this Property 1.

For any f satisfying Property 1, we can partition .S into disjoint events E (elation) and
E’ (the complement of E) such that

fs)y<m(f)—26 seF
f)>m(f)+26 scFE

W
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Hence, for any g, |g(s)| < 6, we have

and hence

U(m(f+g))—U(m(f))=/EIU((f+g)(S))—U(f(S))dW+/ (1 =b)(w((f+9)(s)) —u(f(s)

E

Now by Unboundedness, we can choose f satisfying Property 1 for both >~ and % and
such that 7 (EF) is arbitrarily small for both =~ and % . Since the integrand in the second
term on the RHS is bounded, this term can be made arbitrarily close to zero, in particular
smaller in absolute value than any A > 0.

Suppose for some g, |g(s)| < 6, we have m(f) =m (f + g). Then

/EIU((f+g)(S))—U(f(S))dW+/ (1=b)(u((f+9)(s)) —u(f(s))dr =0

E

implies

<A

/SU((f+g) (s)) —u(f (s))dn

We can now apply the argument of the SEU proposition to show that ~ is everywhere at
least as uncertainty averse as % only if m(A) = 7w (A) for all A € £ and w is a concave
transform of u

Part 2.

It is trivial that we require b > b, Suppose b > b~ 0, and that w (A) = 7 (A) for all
A € &, uis a concave transform of u. Then the Gul result shows that for any non-trivial
f,m(f) <m(f). Let E, E be the elation events. By choosing f with a probability mass in
the interval [m(f), m(f)], we can make the measure of F — E as large as we like relative
to E' and E. Choose § and & to define the event g

6 scE
—§ scE

such that



so that m (f) = m (f + g) . Note that this can be rewritten as

(1-3) ([ +o-umar) - [ @n-ur-snds
- [ @i —ulr=sndn=o

Hence provided the measure of E — Eis large enough

(1—1b) </ (U(f+5)—U(f))d7T> —(1-9b) </]3E(U(f)—U(f—5’))dW>

E

- [ @i —utr=ndn -0

so that m (f + g) > m (f) and hence 7 is not everywhere at least as uncertainty averse as
- |

~

Proof of Proposition 8.
Necessity of the condition Py 5y > G
Fix B € &, such that v(E) # 0,1 and —co < z' < z? < 2° < oco. Let z* =
o (@) + [a(z®) —a(z")][1 —v(E)] /v (E)). Consider the pair of acts f = z},z° and
= z3x'. By construction, g constitutes an elementary increase in uncertainty over f.
Now since

/ v({s:u(f(s) 2wp)—v({s:u(g(s)) > w})dw

1 pE)[a(e) -2 ()] - 9 (B) [a (") — i (7)] = O

we have f ~ g. So for (u,V) to be at least uncertainty averse, requires f ~ g, or,

/OQ v({s:u(f () > w)) —v({s:ulg(s) > w})ldw > 0.

o0

This is equivalent to,

1—v(E)] /v (FE
< ) (2)

[@(z) —a(@®)]/[a(z?) —a(e)] — [1-0(E)]/v(
Hence a necessary condition for 7~ to be at least as uncertainty averse as % is that the
supremum of the left-hand side of (2) (which is related to G(,z), the index of relative
greediness of u compared to u) be less than or equal to the infimum of the right-hand side

of (2), which is P, 5, the index of relative pessimism. We are almost done, except that
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the supremum of the left-hand side of (2) is taken over vectors (z!, 2%, 2%, z*) satisfying
o' < z? <2’ < z'and also ' = 47 (4 () + [4(2?) — 4 (2Y)][1 — v (E)] /v (F)), so this
supremum could in principle depend on v (F). But the following lemma shows that this

supremum is equal to G, and thus independent of v (E).

Lemma 15 Letu and u be continuous and increasing and let E € £, such that v (E) # 0, 1.

Define
Xgp = {(xl,xQ,xS,x JeR" : 2" < 2* <2’ < 2, Egi;:gg?ﬁ = [1;(1/E()Eﬂ}
R _ [u (@) —u ()] / [u(@®) —u (')
Cun® =, o (G s e 0T)

P roof. arly G (E) < Gug). So it remains to show G,q) (E) > G(uz), that is, for
any (z!, 2%, 2%, %) € R* such that ! < 2? < 2% < z* and any € > 0, there exists a vector
(v, v% %, y*) € Xg such that

w(@) —u@)]/ w@) —u@) .
[yt —a@)/[u@?) —a@h)] ~ @) —a(z®)]/[o(@?) —a(z')]

Set A ;= [1 — v (E)] /v (FE). Now by continuity of u and 4, there exists some z° € (z°, z%)

=
"
N
|
g
)
w
—
=
"
X
|
g
B

such that for every z € (z°, z%),

Divide the interval (4 (z'), 4 (z?)) into K sub-intervals of equal length A = (@ (!
such that AA < 4 (%) — 4 (z°). This guarantees that the sequence 4 (:Jc3
W (22)+2AA, 4 (2*)+3AA, ... hassome element @ (z°)+kAA in the interval (4
Let z =4 (4 (%) + kAA). Since

[u(@) —u ()] /[a (@) - a(z")]

= B Y e (i(2) + (G DAA) —woi ! (i (a7) + iAA)] /A,

there is a sub-interval (4 (y°), 4 ( (u(

such that [u(y*) —u(y”)]/[@ (") — o (y*)] > [u (:E) (:t?’)
"), 4 y*) = (@(z®) + jA, a (s’

along which [u (y?) —u (y")]/[a (¥*) !

completes the proof of the lemma. m

of (@ (%), (z*))

%)].  Similarly,

A)of (a(z'),a(«?))
2y — 4 (zY)]). This

there exists a sub-interval (%
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Sufficiency of the condition Py 5y > Gua).

Fix a pair of acts, f and g, s.t. gUf. In particular, suppose for some a, 3 > 0, some

partition {E}, ... , E,} and outcomes et <. <z
S| n—
f = zpah, .. Ty, Tl e T, ! 2" and
. 1 2 2 l f+1 n—1 n
9 = (x _ﬁ>E1 (x _ﬁ>E2(x _6>E4 (x +a>E4+1"'(x +O‘>En,1 (" + a)
Let A= Uz z+1

It suffices to shOW that f~ g implies f = ¢g. * If f~ g then
‘

Z [ﬁ (xl> — U (xl - ﬁ)] [f/ (U::@ Ej) —¥ (U::i+1 EJ)]

i=1

-3 ) @ (UL 5) -2 (U, B)] - o
where by convention U;l:n “
and y° € [z, 2"] such that

E; := @. By mean-value theorem, there exists y* € [z, z']

Just remains to show that f 7~ g, or equivalently, that
‘

Z [u (xl> —u (xl - ﬁ)] [V (U::@ Ej) v (U::i+1 EJ)]

i=1

Skl E) (U5 2

i=£+1

Now let m and m' be the indices satisfying
w (™) —u(=z™ - 0)] < [u (:Jc’) —u (:Jc’ — ﬁ)] fori=1,...,(
[u (:Jcm/+0z) —u(xm/)] > [u (:Jc’ﬁ—&) u( )] fori=14,...,n

4 If f= g, then there exists £ > 0, such that the act f/, defined by f’ (s) = f(s) — =, we have f/'< g.
Hence if f'~ g implies f’ > g, by monotonicity we have f > f’ and thus by transitivity, f > g.
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i—f+1 =t
> (@) —u @ — 8)][1 — v (A) - [u (xm +a) o (xm)] v (A)
B w(z™)—u(x™ - 0)[1—v(A) [u (:Jcm +a>—u(xm/)]y(A) o3 s
|\ R el rw | Ee e awr@ ) LW e el
_ wE™) —u@™ - P W+ o) —u@)]v(A)
[ (y?) — 4 (y* — 8)]
" 1-vA/v4) [u(z™ + o) —u(z™)] / [u(@™) —u(z™ — B)]
1-v(A)]/ (4 (y?) — u (y? — B)]

>

But P, 3 > Gus) and thus f 77 g, as required. [ |

Proof of Proposition 12 Fix two comonotonic acts f and g.

We first consider the case in which the two acts exhibit a “finite-crossing” property in
the sense that there exists a finite partition, {El, N } that is ordered with respect to
f (and hence also with respect to g) and such that, for each k, either

(a) g(s)> f(s) Vse E*
or
(b) g(s) < f(s) VseE

If (a) holds on E¥ and (b) holds on E*, then the standard analysis under risk applies -
note that by selecting the probability distribution over states appropriately, we can always
ensure that ¢ is more risky than f in the sense of Rothschild-Stiglitz. That is, there exists
a probability distribution u (.) defined over £ such that for all z

/0(u({s:f(S)Sy})—u({s:g(S)Sy}))dySO
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and
/0 s fs)<yh)—p{s:g9(s) <y}))dy=0

Hence, as Machina and Pratt (1997) show there exists a sequence of simple mean preserving
spreads

Consider the case where (a) holds on E' and EX. (note that this includes the case when
g(s) > f(s) Vs). Now consider any descending series of non-empty sets E! = A! D A2%....
such that

(i)
Ao
(ii)
sup {f (s):s € A} <inf{f(s):s € E"\A'}

Small-event continuity ensures that such a series exists. Now consider acts b’ such that

for some § > 0.

. g(s) s € S\A
hi(s) =
f(s)+6 seAl

Then, by the argument already given, h' is in the transitive closure of the elementary

transfer relation, and A* — g. [ |
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