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Abstract

Insurance contracts are frequently modelled as principal-agent relation-
ships. Although it is commonly assumed that the principal, in this case the
insurer, has complete freedom to design the contract, the problem formu-
lation in much of the principal-agent literature presumes that the contract
is constrained-Pareto-efficient. In the present paper, we consider the im-
plications of a richer specification of the choices available to clients. In
particular, we consider the entire spectrum of possible power differentials
in the contracting relationship between insurers and clients. Our central
result is that the agent can exploit information asymmetries to offset the
bargaining power of the insurer, but that this process is socially costly.



1 Introduction

A wide variety of economic relationships have been modelled as contracts
between a principal and an agent, made under conditions of imperfect and
asymmetric information. Examples include contracts between employers
and employees, landlords and sharecroppers, or regulators and firms. In
most, though not all, cases, such contracts involve the provision of some
form of risk-sharing between the principal and the agent. Hence, insurance
may be regarded as the paradigmatic case of a principal-agent relationship.

Insurance contracts typically involve some element of bargaining, fre-
quently under conditions of unequal bargaining power. Important concerns
of bargaining theory are to formulate precise notions of bargaining power
and to formalize the intuition that parties with greater bargaining power or
lower levels of risk aversion will secure more favorable outcomes. Kihlstrom
and Roth (1982) analyze bargaining over insurance in the case where clients
facing known risks bargain with a monopolistic insurer. They show that
the insurer will prefer to bargain with a more risk-averse client. This re-
sult was also derived independently by Schlesinger (1984). The same result
is obtained, with a more sophisticated model of bargaining, by Viaene,
Veugelers and Dedene (2002).

In all of these analyses, the loss to be insured is fixed, and the equi-
librium bargain is Pareto-efficient. In many cases of interest, however, the
client has the capacity to take action which will affect the occurrence, and
magnitude of gains and losses. This arises most obviously in the case of
agricultural insurance, where the loss to be insured is a loss of production
due to climatic shocks or insect infestation, and clients may undertake such
actions as the application of fertiliser and pesticides (Horowitz and Lichten-
berg 1993, Miranda and Glauber 1997, Chambers and Quiggin 2002). How-
ever, the same issues arise whenever clients have the capacity to undertake
self-protection (Ehrlich and Becker 1972, Lewis and Nickerson 1989, Quig-
gin 2002). When clients are engaged in production or self-protection, the
insurance contract will affect their productive decisions, even in the absence
of the kind of private information that produces moral hazard problems.
Hence, the distribution of bargaining power may affect the efficiency of the
insurance contract.

The purpose of this paper is to examine the interaction between dif-
ferential bargaining power and the efficiency of insurance contracts. The
analysis is undertaken in a framework of state-contingent production, which



allows modelling of self-protection and self-insurance by the client. Our
central result is that the client can exploit information asymmetries to off-
set the bargaining power of the insurer, but that this process is socially
costly. Hence, where the client has private information, an increase in her
bargaining power will, in general, enhance welfare.

In the case where the insurer has all the bargaining power, we show
that the client engages in costly self-protection to enhance her subsequent
bargaining position vis-a-vis the insurer. This results in a loss of efficiency
relative to the case in which the services provided by the insurer are in
competitive supply, subject to a zero-expected-profit constraint. Finally,
for the general case of Nash bargaining, we show how the client can benefit
from the existence of asymmetric information.

2 State-contingent production

We use upper-case letters to denote state-independent scalars such as the
expected output Z and the insurer’s expected profit P, lower-case letters
to denote state-dependent scalars such as output zs in state s and boldface
to denote vectors such as the state-contingent output vector z.

Production is undertaken by the client, who uses a vector of inputs
x € RV to produce a vector of state-contingent outputs z € RM*¥, Thus,
the technology may be summarized by the family of feasible output sets
Z (x). The output zs, observed if state of nature s is realized, is, in general,
an element of ®M. To simplify notation, we will focus on the case M =1,
S = 2. The general properties of state-contingent production technologies
are discussed by Chambers and Quiggin (2000).

2.1 The effort cost function

The client’s ex post preferences are of the net returns form

w(y,x) = u(y — g(x)),

where u is a differentiable, concave, strictly increasing von Neumann—
Morgenstern utility function, y is the return to the client, and g is a strictly
convex and increasing function. This objective function, referred to as wutil-
ity of net returns, differs from that commonly used in the literature on
principal-agent relationships, in which the objective function is additively



separable in income and effort (Grossman and Hart 1983; Quiggin and
Chambers 1998). The alternative formulations of the objective function
are equivalent if the utility function displays constant absolute risk aver-
sion, as in Holmstrom and Milgrom (1987).

Chambers and Quiggin (1996; 2000) show that, under plausible con-
ditions on ¢ , there exists a nondecreasing and convex effort-cost function
C'(21, 22) which represents the minimum of g(x) consistent with x producing
(21, 22). Thus, the client’s maximum expected utility, given state-contingent
payments y; and gy, and consistent with producing the state-contingent
output vector (z1, 22), is

Elw(y,x)] = mu(y: — C(x1,22)) + mau(y2 — C(z1, 22)),

where w5, s = 1,2, is the client’s subjective probability of state s, and E
is the expectations operator, taken with respect to the probability vector
(m1,m2). As is shown by Chambers and Quiggin (1996; 2000), standard
conditions on the technology set and the effort cost function ensure that C
is well-behaved.

Assumption 1: The effort-cost function C:f*? — $ is convex, strictly in-
creasing and twice differentiable in each argument.

Following Chambers and Quiggin (2000), we define a state-contingent
output vector (21, 22) as inherently risky if

C'(z1,2)<C(2) (1)

where
Z = (M2 + Tozo, T121 + M222).

Here the terminology reflects the fact that, at a given level of cost for
inherently risky outputs, the client must sacrifice expected output to remove
uncertainty from production. Notice, in particular, that if this condition is
not satisfied, a risk-averse client can always costlessly self-insure by choosing
to produce the riskless output z which yields the same expected output as
the risky (21, 22), but at lower cost. By the monotonicity of the client’s
preference function and his risk aversion, the riskless output vector will
thus always be strongly preferred to the risky output vector.

Tt may appear that all stochastic technologies are inherently risky. This is false.
Chambers and Quiggin (2000) define a class of stochastic technologies (the generalized
Schur convex) which are nowhere inherently risky.
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We define (21, 22) as monotonic if 21 < z; and impose
Assumption 2: Any inherently risky (21, 22) is monotonic.
To guarantee the existence of a non-trivial optimum we require

Assumption 3: There exists z such that:

J =Mz + Tozy > C(Z)

3 The production problem

3.1 The client’s problem without contracting

We first consider the problem where the client is the residual claimant. In a
general principal-agent interpretation, this is the case where no contracting
takes place. The client receives net return

ns = zs — C(z)

in state s, occurring with probability .
Thus for the case of two states of nature, the client seeks to maximize

W(n) = mu(ng) + mou(ns).

This problem has been analyzed by Quiggin and Chambers (2000) for gen-
eral preferences and S states of nature. In this section some crucial results
are summarized. Denoting 0C/0zs by Cs, the client’s first-order conditions
are of the form

s (25— C (21, 22))— (M’ (21 — C'(21, 22)) + W/ (22 — C(21,22))) Cs =0 s=1,2

with equality at an interior solution, and are illustrated in Figure 1 by a
tangency between the client’s indifference curve and isocost curve. Under
the stated conditions, a unique interior optimum will exist. We define

z = argmax W(z—C(z)1)

to be the solution to the client’s maximization problem, and denote the
associated vector of net returns by 1.
We first observe:



Lemma 1 : Under the stated conditions, the optimal choice (21, 22) is in-
herently risky and monotonic.

Proof: That (21, 22) is inherently risky follows from the fact that pref-
erences preserve second-order stochastic dominance, since for (21,22) not
inherently risky, the vector (21 — C(2z),22 — C(z)) is dominated by (Z —
C(z), Z — C(z)) where R

Z = 71'121 + 71'222.

Monotonicity follows by Assumption 2.1
Adding and rearranging the first-order conditions yields the arbitrage
condition

Cy+Cy=1.

Suppose on the contrary, that C7 + Cy < 1. Then it would be possible
to increase output in both states by one unit, while increasing costs by
less than one unit. Hence, net returns would increase in both states, and
the client would be better off with probabilityl. A symmetrical argument
applies when C7 + C5 > 1. Chambers and Quiggin (2000) define the set of
vectors z satisfying the arbitrage condition as the efficient set.

A risk-neutral client chooses z to maximize expected net return

N(z) = Z—-C(z)
= 7T12’1+7T22’2—C(2’1,2’2).

The risk-neutral optimum choice of z is denoted z™¥ and the associated ex-
pected profit is denoted N#V . Visually it coincides with a tangency between
the fair-odds line, with slope — (m1/m2), and the client’s isocost curve. It
will also be useful to define, for any cost level C,

z™ (C) = argmax {m21 + M2z : C(21,22) < C},

the output vector that maximizes expected revenue, conditional on cost
level C.

3.2 Self-protection and self-insurance

A central theme of the principal-agent literature is that seemingly ineffi-
cient contractual mechanisms may be explained as devices to spread risk.



In the standard principal-agent model, the risk faced by the agent is ex-
ogenous except for a scaling factor determined by the agent’s effort level.

Using agricultural production as an example. Chambers and Quiggin
(2000) show how the choice of more or less risky technologies can be mod-
elled in the state-contingent framework. Crop diversification provides an
example. In the single-output technology modelled here, crop diversifica-
tion cannot be modelled explicitly. However, if z is regarded as a generic
output, diversification may be seen as a particular sort of risk-reducing
technology. If the states of nature represent more or less favorable condi-
tions for the production of the primary cash crop, self-protection may be
undertaken by increasing the allocation of effort and other resources to the
production of subsistence crops, thereby reducing the variability of returns.

The client’s cost of self-protection is defined as the loss in expected net
return associated with the choice of a given z and is given by

Ay (z) = N® — N(z)
= (Z™ - C(="™)—(Z - C(z)).

It is useful to partition this cost into two components:

Ai(z) = A, (z)+A(z): and
A, (z) = Z"(C(z)) — Z, where
Ac(z) = (ZF = C@E")— (2™ (C(2)) -~ C(2)) .

With this division, A, may be referred to as the pure cost of self-protection.
A, reflects the loss in expected output Z arising from the choice of a less
risky state-contingent output vector z in preference to z"* (C(z)), which
yields the maximum expected output level attainable for the given cost level
C(z). Alternatively, and dually, A, may be seen as measuring the cost of
resources diverted from increasing the expected level of output to reducing
the riskiness of output. The second component, A, represents the scale
effect of risk aversion.

By the definitions of Z% (C) and Z%¥, both A, and A, are non-negative
for optimal choices 2, even in cases where C(z) >C(z"") . If the technol-
ogy is smooth and preferences are strictly risk-averse, A, will be strictly
positive. Chambers and Quiggin (2000) show that the cost level C'(z) will
be independent of risk attitudes, and therefore A, will be zero, if the tech-
nology displays constant absolute riskiness, that is, if for any z, 6 <0

A, (z) = A, (z+61).
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Self-insurance will also not be modelled explicitly. Rather the utility
function u will be assumed to incorporate the effects of self-insurance. With
this convention, the cost of self-insurance for any z may be defined as

Ay (z) = Z — C(z) — CE(n).

where C'E/(n) is the certainty equivalent net income associated with the
risky net return vector z and is determined by

Risk aversion implies that A, (z) > 0, for all z.
The client’s problem, therefore, may be reinterpreted as that of choosing
z to minimize the cost of self-protection and cost of self-insurance:

Ay (z)+ Ay (z) = N¥—-CE(n)
78N — C(z"™)—~CE(n).
Since the maximum profit available to a risk-neutral client is exogenously
given by the technology, and since w is monotone increasing, this is ex-

actly the same as maximizing W(z—C'(z)1) =u(CE(n)). Hence, the opti-
mal choice is z, yielding certainty equivalent net returns C'E ().

3.3 The stochastic production function case

The importance of self-protection may be seen by considering the special
case of a stochastic production function, which has been employed in most
of the literature on principal-agent models. In this case,

zs = f(x,5),
or, allowing for free disposal,
Z(x)={z:2, < f(x,5)Vs}.

The most common approach to stochastic production functions suppresses
reference to any underlying state space, focusing instead on a function
f (x,6) where ¢ is a random variable (that is, a measurable function e : § —
k) taken to represent climatic and other conditions relevant to production.
This representation is intuitively appealing if the assumption of a stochastic
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production function is valid, but presents obstacles to understanding in
general.
It is particularly useful to focus on the case of input separability

ze=f(m(x),s),

where m : ®Y — R is a index of input use. This case includes the most
common form of the stochastic production function, that of a single input.
Under the assumption of constant returns to scale, m can be chosen to be
linearly homogeneous in x, and f is then linear in m.

Under the assumption of a stochastic production function with input
separability, the state-contingent output vector z is completely determined
by the level of the input index m (x). Hence, assuming cost minimization
and the choice of a nondominated output z, A, (z) = 0. Thus, under input
separability, the stochastic production function technology allows no role
for pure self-protection. The only economic choice is the value of the input
index m (x) which is determined by a trade-off between A. (z), the cost of
suboptimal scale, and As (z), the cost of self-insurance.

A particularly interesting case, commonly examined in empirical work,
is that of an additive disturbance

fxe)=g(x)+h(e).

Chambers and Quiggin (2002) show that stochastic production functions of
this form display what they refer to as constant absolute riskiness. Visually,
constant absolute riskiness implies that successive isocost curves have points
of equal slope as one proceeds in a direction parallel to the 45° line in (21, 22)
space. It follows that A.(z) = 0, and hence also A; (z) = 0, so that risk
aversion has no effect on output choices.

As Newbery (1977) shows, under conditions of constant returns to scale,
and assuming all producers have access to the same stochastic production
function technology, a set of competitive factor markets will yield an equi-
librium that is constrained Pareto-efficient, in the sense that no improve-
ment can be realized by any set of share contracts. Newbery’s argument
depends solely on concavity and is therefore applicable to the more general
technology considered here.

From a state-contingent perspective, the necessary condition in New-
bery’s result is that the relevant states of nature should be the same for all



producers. It is not sufficient that the technology f (z,¢) and the distribu-
tion of & should be the same for all producers. In addition, the stochastic
input ¢ should be the same, or at least perfectly correlated. In the present
paper, it is assumed that the state of nature s reflects ‘idiosyncratic’ risks
specific to individual clients. Hence, an insurer dealing with many clients
may be regarded as risk-neutral without significant loss of generality.

4 Contracting

We now consider the principal-agent problem that arises when a risk-
neutral insurer contracts with a risk-averse client who is engaged in pro-
duction under uncertainty. The insurer has the right to specify contract
provisions involving a payment y to a client for an observed output z, with
the insurer receiving z — y. Hence, if the contract is accepted, the client
receives a state-contingent payment vector y(z) and the insurer receives the
state-contingent income vector z — y. The client is free to take the contract
offered by the insurer or to reject it. If the client rejects the contract, he re-
tains the rights to the state-contingent output vector z. In our framework,
therefore, the contracting problem reduces to one of simultaneously pick-
ing a state-contingent output vector for the client and a state-contingent
payment vector for the insurer. The approach, therefore, is general enough
to permit any degree of interlinkage of contract stipulations between the
client and the insurer.

We consider two polar cases in relation to the insurer’s objective func-
tion. In the competitive case, we assume that competition among potential
insurers drives expected profit to zero. Hence, the problem is one of de-
signing a contract to maximize the client’s expected utility subject to the
constraint that the insurer must make zero expected profit. In the other
polar case, we assume that the insurer has complete monopoly power. Thus
the problem is one of maximizing the insurer’s expected profit, subject to
the constraint associated with the client’s right to reject the contract pro-
posed by the insurer and receive instead the state-contingent output vector
Z.

This interaction is represented as an extensive-form game, and we focus
on incentive-compatible subgame-perfect equilibria. We consider three pos-
sible information structures. In all cases the client can observe, ex post, the
state of nature s. In the first-best case, the insurer can observe the state of



nature ex post, and can commit in advance of the game to offer a payment
schedule y(z) if the client chooses state-contingent output vector z. The
timing is as follows:

1. The insurer commits to a payment schedule y
client producing z"'?.

2. The client accepts or rejects the insurer’s contract (rejection is rep-
resented as setting y = z).

3. The client chooses a state-contingent output vector z =(z1, 22).

4. Nature chooses s € {1, 2}.

5. The client and the insurer observe the state of nature s.

6. If the client accepted the contract at stage 2 and produced z"?, she
receives nt'? = yI'P — C(z"P), and the insurer receives 2f'2 — yI'B, If the
contract was rejected, the client receives ny, = 2z, — C(z) and the insurer
receives zero.

In the second-best or symmetric-information case, the insurer can ob-
serve the state of nature s, but the client chooses the output vector z before
the insurer can commit to a payment schedule. Thus, the bargaining se-
quence is:

FB contingent on the

1. The client chooses a state-contingent output Vector z5P :(zlsB 25P)

2. The insurer offers a payment schedule y*Z=(y{Z,y5P) for output
sB
z7".

3. The client accepts or rejects the insurer’s contract.

4. Nature chooses s € {1, 2}.

5. The client and the insurer observe the state of nature s.

6 If the client accepted the contract at stage 3, she receives nSP =
y?B — C(2°P), and the insurer receives z3F — %8, If the contract was
rejected, the client receives n, = 252 — C(z) and the insurer receives zero.

Except where the insurer has no bargaining power, the second-best case
gives rise to a hold-up problem for the client, who must choose the state-
contingent output vector z°? before the insurer determines the payment
schedule y®Z. This is exactly analogous to the classic hold-up problem
analyzed by Klein, Crawford and Alchian (1978), in which one party makes
a fixed investment whose value depends on the subsequent decisions of a
specific contracting partner. An excellent summary of the hold-up literature
is given by Holmstrom and Roberts (1998).

In the third-best or asymmetric-information case, the insurer can ob-
serve exr post output zs, but not the state of nature. Hence the contract
offered by the insurer must be incentive-compatible. The timing is:
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1. The client chooses a state-contingent output vector z'P=(z{?, 215),

2. The client announces an output plan z'2 = (z{ 2, zI'7) (in incentive-

compatible subgame-perfect equilibria, z' %= z'?).

3. The insurer offers a payment schedule y?P=(y{?, yI®) for output
5TB— (5B 3IB)

4. The client accepts or rejects the insurer’s contract (rejection is rep-
resented as setting y?P= zTP),

5. Nature chooses s € {1, 2}.

6. The client observes the state of nature s.

7. The client reports state s, (in incentive-compatible subgame-perfect
equilibria s=s).

8. The insurer observes the ex post output 275,

9. If the client accepted the contract at stage 4 and produced 1P = zI'B,
the client receives nI? = yI'P — C(zP), but if 277 # ZI'P the client receives
an arbitrarily large negative payoff. If the contract was rejected, the client
receives ny, = 21 P — C(z), and the insurer receives zero.

The focus of our analysis is on the interaction between the game struc-
ture and the relative bargaining power of the insurer and client. We first
observe the following result, which is valid for any of the information struc-

tures considered in this paper.

Proposition 2 Suppose z1 < zo. Then any contract which is acceptable to
the client and which yields non-negative profits to the insurer must satisfy

21 Sy, Y2 < 2o

Proof Suppose to the contrary that yo > z5. Then the contract can only
be profitable if y; < z; and

MY + MoYs << M121 + Maza.
This means that (21, 22) second-order stochastically dominates (y1, y2)
so that acceptance of the contract would make the client worse off.
Other violations of the conditions can be dealt with similarly. H

5 Monopolistic insurers

In the monopolistic case, a single insurer contracts with clients by specifying
an output vector (21, 22) and payment vector (yi,y2). Clients must choose
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whether to produce the output vector (21, z2) and receive the payment vec-
tor (y1,y2) proposed by the insurer, or to produce some other output vector
(in which case they must self-insure). Then, after committing to (21, 22),
clients have the opportunity to accept or decline the contract offered by the
insurer.

The problem faced by the client is the need to commit to a state-
contingent production vector in the knowledge that she will subsequently
deal with a insurer who possesses monopoly bargaining power and who,
therefore, has the capacity to capture all available rents. In all such cases,
unless the insurer can commit ex ante to guarantee the client some min-
imum utility level, the client must choose her output vector to maximize
the utility of her outside option.

5.1 First-best case

In the first-best case, the insurer can commit in advance to providing the

client with a given utility level, conditional on accepting the proposed con-

tract. If the insurer’s proposed contract yields the client less than C'E(n),

the client’s dominant strategy is to reject the offer and produce z. If the

contract yields at least CE(n), the client’s weakly dominant strategy is to

produce the output proposed by the insurer andto accept the contract.
Hence, the insurer’s problem is:

m}%x{ m1(21 — 1) + m2(22 — y2)}

subject to the constraint
mu(yr — C(21, 22)) + mou(y2 — C(21,22)) > u(CE(R)) .
The insurer will, therefore, choose (', 2£'P) to maximize
P=mz+mz—C(2,%2)
and make a state-independent payment Y*? such that
YP — C(z"P) = CE(1).
It is obvious that Z'P = Z%N so that the insurer’s expected profit is
pFB _ pRN _yFB
= A1 (2)+A2(2).
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The solution is illustrated in Figure 2, by having the client produce at
the point of tangency between the fair-odds line and the isocost curve for
C (ZRN ) and then having the insurer define an implicit indemnity structure
that leaves the client at the point of intersection between the fair-odds line
and the client’s indifference curve through n.

5.2 Second-best (symmetric information) case

We next consider the case when the insurer can observe the state of nature,
but cannot commit in advance to a conditional payment y(z). Hence,
the client commits to the state-contingent production vector (z1, z2) before
negotiating with the insurer. The insurer must then offer a payment vector
(y1,y2) which the client can either accept or decline. Since the insurer
can observe the state of nature, the client must announce §=s and must
therefore announce z = z. Given that the client has committed to, and
announced, the state-contingent output z, the dominant strategy for the
insurer is to offer the client exactly W (z—C(z)1), the utility the client
would get from consuming the output (21, 22) chosen in stage 1. Hence
the iteratively dominant strategy for the client is to choose the output z
that maximizes this utility. Hence, this game has a unique subgame-perfect
equilibrium, which we now explore in detail.
The insurer’s objective function is:

m&x mi(yr — 21) + ma(y2 — 22)

subject to the constraint
mu(yr — C(21, 22)) + mau(yz — C(21,22)) 2 u (CE(R))

which requires that the client, having committed to the (z1,22), vector
will find the insurer’s contract at least as attractive as the alternative of
consuming (21, 22).

In the optimal solution, the insurer will offer a state-independent pay-
ment of Y, where

Y —C(z) = CE(q).

The insurer’s expected profit is

13



P = Z-Y
= PP — A (2)
= Ay (2)
where R
A1 (2)=[Z"F = CP, 2 0)] = [Z = Ca, )],
which is the cost of self-protection by the client, and
Ay (z)= P — CE(h)

is the client’s risk premium. Under monopoly, the symmetric information
case involves a welfare loss of A (z) relative to the first-best. This loss
reflects the cost of self-protection undertaken by the client in anticipation
of the hold-up problem associated with the insurer’s use of monopoly power.

Note that this welfare loss does not arise in the case of a stochastic
production function with additive disturbances.

5.3 Third-best (asymmetric information) case

The asymmetric information monopolistic case will be referred to as the
third-best, since both the insurer’s monopoly power and the client’s pri-
vate information reduce aggregate welfare relative to the first-best The
insurer’s dominant strategy, given an announced output z is to offer a pay-
ment schedule y yielding the client W (z—C(z)1) if z is produced, and
W < W(z—C(z)1) if any z # z is produced. Hence, in any subgame-
perfect equilibrium, the client produces and announces z, yielding certainty-
equivalent outcome CE(n).

The outcome in state s is that the insurer’s payoft is zs — ys, and the
client’s payoft is ys — C(21, 22). Hence the insurer’s problem becomes

m&x mi(yr — 21) + ma(ys — 22)

subject to constraints analogous to those in the competitive case:

mu(yr — C(21, 22)) + mau(y: — C(21,22)) = uw(CE(R));

mu(yr — C(1, 22)) + mou(y: — C(Z1,22)) = ulyr — C(%1,%1));

mu(yr — C (21, 22)) + mou(ys — C(21,22)) > u(yz — C(Z2,%22)); and

mu(yr — C (21, 22)) + mou(ys — C(21,22)) > mu(ys — C(%2,21)) + mou(yr — C (29, 21)).



Assuming z; < zp,the incentive compatibility constraints clearly require
y1 < yo with strict inequality whenever z; < 2. Hence we obtain the
following Corollary to Proposition 1.

Corollary 3 Any solution to the asymmetric information problem with
non-negative expected profit for the insurer must have

21 <Y1 <Yz < 29.

Since y2 < 22, the option of producing (22, 22) and receiving (y2, y2) un-
der the insurance contract is dominated by the alternative of producing
Z = (29,%22) and setting y = z. Also, since (22, 21) is not inherently risky,
the option of producing (22, 21) and receiving (y2,%1) is dominated by the
alternative of setting z =(y2, 1) and setting y = z. In each case, the dom-
inating alternative is dominated by the trivial contract in which the client
produces z and receives payment y = z, yielding net returns n. Noting that
this contract satisfies all the constraints, we observe that the set of feasi-
ble contracts yielding W > W(z—C(z)1) is non-empty. Assuming that C'
is ‘sufficiently’ convex, the set of feasible contracts will also be compact.
Hence, we have:

Lemma: There exists an optimal pair (y,z) satisfying the constraints
(T.1) to (T.4). For this pair, (y, z), the constraints (7'.3) and (7.4) are not
binding.

We have proved the following result, previously derived by Grossman
and Hart (1983) for the case of an objective function additively separable
in income and effort.

Proposition 4 In the asymmetric information problem with competitive
msurance and a net returns objective function, the equilibrium will yield
the client reservation wutility.

We can derive an explicit solution to the insurance problem. Let u;
denote u(y; — C(21,%2)), ¢ = 1,2. Then the solution to the problem takes
the form

mu + mouy = u(CE(N))
= u(yr — C(&1, 21)).
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Hence,

or

and

N>

v2(2)—C(31,%2) = u! <U(CE(ﬁ))_mu(yl(i)_c(éh@)))

Uy
- <u(C’E(ﬁ)) —mu(CEM)+C (21, 21)— 0(21,22))>

T2

Thus, the insurer’s expected profit is

PTB = é—myl(él,ég) — Ta2Y2

(1, 22)
— P -0 (2) - A1 (2),

where A, is the client’s cost of self-protection as before, and

AT (2) = (miy1(2) + Tay2(2) — C (2)) — CE(R)

is the client’s risk premium associated with the requirement for incentive-
compatibility. Moreover, we note that 0 < AZP (2) < Ay (Z) and

PP = Ay (2) — A7P (7).

The existence of asymmetric information prevents the insurer from fully
insuring the client and capturing the entire risk premium.
The incentive-compatibility constraint implies:

CE™ =4, — C(21,%)
S0

A2TB = my + 7y — C(21, 22) — CE"
= To(P2 — Y1) — (C(21, 22) — C(21,21)).
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6 Competitive insurance

The most important differences between the state-contingent production
approach adopted here and the standard model based on a stochastic pro-
duction function technology arise in the competitive case, where the insur-
er’s expected profit is zero. In the symmetric case, the absence of a hold-up
problem arising from the need to deal with a monopolistic insurer means
that the client does not need to commit to costly self-protection prior to
contracting. Hence, the first-best outcome is achieved. Under asymmetric
information, the problem of inadequate insurance is mitigated by the ca-
pacity of the client to bear more risk than would be the case in the presence
of the hold-up problem, though less than in the presence of full insurance.
The essential difference between the general state-contingent representa-
tion and the stochastic production function approach is the treatment of
production risk as a decision variable rather than as a by-product of input
choices.

6.1 First-best and symmetric information cases

In the competitive case, the insurer must offer the contract that maximizes
the client’s utility, subject to the insurer making zero expected profit. In

the first-best case, the insurer will therefore choose (2f'Z, 2I'P) to maximize

FB
N :7T12’1+7T12’2—C(2’1,2’2)

and make the payment NP in both states of nature. It is obvious that
NFB = NEN g6 that the contract yields the client a welfare gain of

NN _CE®@) = A (2) + Ay (2)

relative to the equilibrium without insurance.

Competition among insurers ensures that the insurer must offer the most
appealing possible contract to the client, subject to the zero-expected-profit
constraint. Hence, even in the absence of an ex ante commitment by the
insurer, the first-best contract is achievable provided that the state of nature
is observable. That is, the symmetric information equilibrium is the same
as the first-best. This common outcome is the same as in the first-best
monopoly case, except that all the benefits of the contract go to the client
rather than the insurer.
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Relative to the monopolistic symmetric information case, the client is
better off and the insurer is worse off, as would be expected. However,
unlike the monopolistic case, the outcome in the competitive symmetric
information case is Pareto-efficient.

6.2 Asymmetric information case

The asymmetric information case arises when the insurer cannot observe,
or at least contract on, either the state of nature or the state-contingent
production vector. Hence it is possible for the client to misrepresent the
state-contingent production vector to which she has committed, and sup-
port this misrepresentation by misreporting the state of nature where nec-
essary. For example, the client might commit to (z1,21) but report that
she has committed to (21, 22). Whatever state of nature actually occurred,
the client would produce z; and report the occurrence of state 1.2 We may
confine attention to incentive-compatible equilibria, in which such misrep-
resentation does not occur.
For given z, the optimal payment vector must satisfy

(T'.1) my1+ Tay2 = W121+ W22
(T'2) mu(y — C(z1,22)) + mau(yz2 — C(z1, 22)) u(yr — C(z1, 21));
(T.3) mu(yr — C(z1, 22)) + mou(y2 — C'(21, 22)) u(ys — C(29,22)); and
(T4) mu(y — Cza1,22)) + mau(y2 — C(z1, 22)) mu(yz — C(z2, 21))
+mou(yr — C(22,21))

AVARAVARLVS

As in the monopoly case, only the first and second constraints will bind
in equilibrium.

Thus, for any announced (z1, 22), competition will induce the insurer to
offer an output-dependent payment y that maximizes the client’s utility
subject to the zero profit constraint

(T.1) myr + Toys = M121 + Tazs

2This is the only relevant possibility, assuming z; < 2. Since the insurance contract
must have yo < 2o by Proposition 1, the option of producing (22, 22) and receiving (y2, y2)
under the insurance contract is dominated by the alternative of not contracting and receiv-
ing (22, 22). Under the assumption of constant returns to scale, the option of producing
(22, 21) is dominated by a convex combination of the returns available by producing (22, 22),
yielding zo — C'(22, 22), and (21, 21), yielding z; — C'(z1, 21).
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and the incentive-compatibility constraint

(T.2) mu(yr — C(z1,22) + mau(y2 — C(21,22)) = u(yr — C(21, 21)).

Let the optimal solution to this problem be denoted y(z). We now consider
some characteristics of the equilibrium pair (y, z).
Consider first y(z). Since 21 < y1 < y2 < 22 and

s (25— C (21, 22))— (M’ (21 — C'(21, 22)) + W/ (22 — C(21,22))) Cs =0 s=1,2

we must have

mu'(y1 — C(z1, 22)) — (' (Y1 — C(21, 22)) + Mo (y2 — C(21,22))) C1 < 0
o' (y2 — C(21, 22)) — (M (Y1 — C(21, 22)) + Mot (y2 — C(21,22))) C2 > 0

Hence, the client would benefit from a change which increased z; and s,
and reduced z; and y; in such a manner as to hold C(z, 22), 22 — y2 and
z1 — 1 constant. Such a change would leave the expected profit equal to
zero. Moreover, totally differentiating the right-hand side of the incentive-
compatibility constraint yields the following expression for the change in
the client’s utility conditional on producing (21, 21) :

u'(y1 — C(21, 21) [dyr — (Ci(21,21) + Ca(21, 21)) dza].

Observing that Ci(z1,21) + Ca(z1,21) < 1, and dy; = dz; < O, the right-
hand side declines, while the left-hand side increases. Hence, the incentive-
compatibility constraint is satisfied after the change. It follows that the
client will prefer to choose a state-contingent output vector z such that

T2+ Mezy > T2+ Mol

21 < 2’1<2’2<2’2.
That is:

Proposition 5 The optimal output z in the competitive asymmetric infor-
mation solution is derived from a mean-increasing spread of z.
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Having derived this result it is possible to characterize the welfare losses
in the competitive asymmetric information solution relative to the first-
best. The client’s problem at stage 1 is to choose z“4® to maximize

mu(y1(z) — C(z1, 22)) + mau(y2(z) — C(21, 22)),

yielding net returns n“*®. Denote the expected output and net returns by
7CAS NCAS.

Relative to the first-best, the client incurs a cost of self-protection
AL(ZC45) + Ayp(2C45) = NN _ NCAS.
and a cost of incomplete insurance
Ay(2°45) = NCAS _ 0 B(nC4%),

As noted above, z¢47 is riskier than %, and E[n“4°] > E[n]. Hence,
A1 (z°4%) < Ay (2) . Moreover, CE(n“4%) > CE(n). Hence,

A1 (zE) + Ap(29%) < A1 (2) + Ay (2).

As in the monopoly case, the incentive-compatibility constraint implies
that:

CEMmO) = {5 — O(:5,2045)

S0
AQ(ZCAS) — lefAS + 7]_2y2CAS’ o C(ZICAS, ZQCAS) o CECAS
Ty = y%) = (C(045,2645) — C (45, 49,

Since the client was free to choose the output level z,

ATE L ATB > \CAS L A4S,

7 Bargaining solutions

In the monopolistic solutions considered above, the insurer’s monopoly
power allows him to capture the entire rent. Compared to the compet-
itive case, however, the insurer’s profit is less than the reduction in the
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certainty-equivalent income of the client, and there is, therefore, a net so-
cial loss. In both the symmetric information and asymmetric information
cases, the client must precommit to an inefficient production vector to se-
cure his reservation utility. In asymmetric information problems, there is
an additional loss relative to the first-best arising from the insurer’s need
to offer an incentive-compatible contract.

We now consider the possibility of co-operative solutions, in which the
client and insurer can contract, ex ante, so as to avoid one or both of these
sources of divergence from the first-best. The solution concept applied
is that of a Nash bargaining solution. The disagreement point is either
the symmetric information solution or the asymmetric information solution
derived above for the monopoly case. The agreement point may be either
the first-best or an asymmetric information solution in which the insurer
commits to a payment schedule based on observed output, but the state of
nature is not contractible.

Co-operative bargaining solutions may arise either because clients gain
an increase in bargaining power relative to monopolistic insurers or because
the externality associated with the client’s private information is partially
internalized. As an example of the former process, individual bargaining
with a monopoly insurer may be replaced by collective bargaining. In
an employment relationship, for example, workers may be represented by
unions. Alternatively, policies such as employee stock ownership plans may
produce some commonality of interest between clients and insurers and
thereby lead to the internalization of externalities.

7.1 First-best case

We first consider the case where the insurer and client can reach the first-
best outcome through bargaining. The disagreement point is one in which
the client chooses some z , yielding the reservation certainty-equivalent in-
come C'E( n). No contracting takes place and the insurer therefore receives
zero.® The agreement point is one in which the client produces the first-
best output z"? = z® and receives a nonstochastic payment Y, yielding
net income Y — C (ZF B ) . Bargaining therefore determines the payment Y
received by the client and the insurer’s profit Z — Y.

3Note that the insurer may contract with otherclients, so that his income in the event
of disagreement is not equal to zero. The existence of outside income will be reflected in
relative bargaining power.
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Analysis of bargaining problems requires a cardinal specification of the
utility of income under certainty. Diminishing marginal utility of certain
income is not necessarily equivalent to risk-aversion under certainty even
though both may be represented by concavity of the utility function. For
simplicity, we assume that utility for both parties is linear in certainty-
equivalent income. (For the risk-neutral insurer, certainty-equivalent in-
come is equal to expected income.)

The relative bargaining power of the two parties is represented by a
parameter o * . Thus, the bargaining problem is to choose Y to maximize

V= (v -0C(z"%) - CE®m)" P °,

where P=/7-Y.
The first-order condition on Y is:

a((v —C(2"™) = CE®)" ' P = (1—a) (Y = C (z"")) - CE®))" P

or:

(Y - C(z")) - CE@)  a

P (1—a)

As in the analysis of Kihlstrom and Roth (1982), the greater the bargaining
power of the client, the higher is the payment Y.
Totally differentiating with respect to C'E(n) and rearranging yields

ay aP
1—a)=(1- -
I=a)=(-a5erm ~ *ecE@)
or, since
ay aP
_ + =90
8CE(@m)  oCE(R)
ay
aCE@m ~ LT

Hence, the client’s final share of income is increasing in C'E(n) , and the
optimal choice for the client is z = z. However, since the actual output is
z"'B, the choice of Z only affects the division of the surplus. The analysis of

41f utility functions display diminishing marginal utility of income, commonly referred
to in the bargaining literature as risk-aversion, the curvature of the cardinal utility func-
tions may be incorporated in the determination of .

22



the first-best case confirms the result derived by Bell (1989) in the context
of tenancy contracts, that, under costless monitoring, the insurer—agent
and Nash bargaining solutions, assuming an affine payment structure, are
identical up to a side payment.

Since, the more risk-averse is the client, the lower is C'E(n),we obtain
the result that, the more risk-averse is the client, the better off is the
insurer. Note that this is not the standard bargaining theory result: the
less risk-averse party, that is, the one with the less concave cardinal utility
of wealth, has more bargaining power. In the present case, both the insurer
and the client have cardinal utility linear in certainty-equivalent wealth.
The result arises because, the more risk-averse is the client, the greater are
the gains from insurance. Since these gains are shared in proportion to
bargaining power, the insurer is better off. On the other hand, since the
client receives only part of the gains from insurance, a reduction in CE (1)
leaves her strictly worse off whenever ao < 1.

7.2 Bargaining solution with symmetric information

In the symmetric information case, the disagreement point, as before, is one
in which the client chooses some z, receiving C E( n) and the insurer receives
zero. The agreement point is one in which the output z is produced and
the insurer offers full insurance, giving the client a non-stochastic payment
Y and receiving the profit

PzY)=Fz]-Y.
Thus, the bargaining problem is to choose Y to maximize
V=(¥-C@)-CE@m) PEY)" *,

which, as before, yields the solution condition

(Y - C(z) -CEM)) a

P(z,Y) (1—a)

Totally differentiating with respect to z and rearranging yields

(1—a)V; (Y —C —CE(R)) = aV;P(EY)
= « (VQE[Z}_VQY) )
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where V; denotes the gradient with respect to the subscripted vector.
Hence,
ViY — (1 - Oé)VgC = (1 - Oé)VgCE(fl) + OéVgE[Z}

In the case a = 0, we have
V; (Y —C)=V;CE(n),

and the client will maximize Y — C'(z) = CE(n) by choosing z = z. On the
other hand, if a =1,

Vi (Y — C) = V;E[#]—V;C,

and the client will maximize Y — C(z) =E[z]—C(z) by choosing z = z"Z.
More generally, the greater the value of a, the greater the optimal value of
Ez]-C(z) and therefore the greater the total surplus. Thus, if the client
chooses the output vector z before the insurer can commit to a payment
schedule, bargaining power matters not only to the division of the surplus
but to the size of the surplus. It is straightforward to show, however, that
an increase in o cannot make the insurer better off, so that the bargaining
solution is always constrained-Pareto-efficient.

7.3 Bargaining solution with asymmetric information

In the asymmetric information case, the agreement point is one in which
the output z is produced and the insurer offers an incentive compatible
payment schedule y receiving profit

P(z.N) = Elz] — Ely(z,N)],
where N is the client’s certainty-equivalent net income
N =u"(W(y—C(2))).

Suppose that the client’s preferences display constant absolute risk aversion.

Then
dP(z,N)

ON
Thus, the bargaining problem is to choose N to maximize:

V = (N-CE(#))* PzN)"*,
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which, assuming constant absolute risk aversion, yields the solution condi-
tion _
(N—-CE(n)) o

P(z,u) (1—a)

Totally differentiating with respect to z and rearranging yields

(1-a)V:(N - CE(@) = a%@

= aV;z(E[z] - Ely(2)]).
In the case a = 0, we have
Vz (N - CE(Dn)) =0,

and the client will maximize N by choosing z = z. On the other hand, if
a = 1,the client will maximize N by choosing z = z’”. Thus, once again,
the greater the client’s bargaining power, the greater the total surplus.

In the model of socially costly exploitation analyzed by Chambers and
Quiggin (2000), the presence of asymmetric information makes the agent (a
tenant farmer) better off, by reducing the return to efforts by the principal
(a landlord) aimed at reducing the tenant’s reservation utility. By contrast,
in the present case, asymmetric information never improves the welfare of
either party, and makes both the insurer and the client strictly worse off
whenever 0 < a < 1.

8 Concluding comments

This paper has explored the contracting behavior of clients and insurers un-
der conditions of asymmetric information and differential bargaining power.
The main focus of attention has been the interaction between differential
bargaining power and two potential sources of departure from the first-best.
The first, which is applicable to a wide variety of contracting situations,
is that clients anticipating the need to deal with a insurer with monopoly
power (or, more generally, with substantial bargaining power) will under-
take costly self-protection to improve the outside option that will form the
basis of subsequent bargaining. The second is the problem of moral hazard,
in which the client has private information about the state of nature.
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The crucial result is that differential bargaining power will affect not
only the distribution of surplus but the total surplus generated.

The analysis has been undertaken using a state-contingent representa-
tion of production, developed by Chambers and Quiggin (2000). A key
advantage of the state-contingent approach is the ease with which self-
protection and asymmetric information can be represented. A variety of
extensions of the analysis undertaken here might be considered. Problems
of adverse selection might be modelled by allowing for a richer state space,
with the client observing a signal, represented by a partition of the state
space, prior to contracting. In addition, the possibility of action by the
insurer designed to reduce the attractiveness of the outside option as in
Chambers and Quiggin (2000) might be considered.

More generally, the analysis above suggests that principal-agent theory
may usefully be applied to problems involving collective action, using the
concept of state-contingent production. The allocation of risk is a central
issue in collective choice, and the state-contingent framework makes this
issue explicit.
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