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1 Introduction

Sandmo (1971) developed a path-breaking extension of the portfolio selection problem in
considering the production choices of a risk-averse, expected-utility-of-net-returns maxi-
mizing firm facing price but not production uncertainty. Extensions of the Sandmovian
model to encompass production uncertainty have been developed by Newbery and Stiglitz
(1981) and a host of subsequent writers. In recent years, the value of information for pro-
ducing firms facing either price or production uncertainty in the Sandmovian framework
has become a particular focus of analysis (Lehmann, 1988; Ormiston and Schlee (1992,
1993); Gollier, 1995; Eeckhoudt and Gollier, 1995; Athey, 2002; Athey and Levin, 2000;
and Athey, 2000). In common with most analyses of production under uncertainty, how-
ever, many of these studies focus on the case of a scalar decision variable, effort, that
shifts a stochastic production function. The resulting analysis is very mathematically ele-
gant, but it is also highly specialized. And in most instances, the analysis bears little or no
resemblance to the types of arguments encountered in other areas of production economics.

This paper has two goals. First, it seeks to demonstrate that standard arguments and
methods from production and duality analysis can be used to provide a comprehensive and
general treatment of the value of information for a risk-averse firm with expected-utility
(linear-in-probabilities) preferences and a general stochastic technology. Hence, one focus
is on integrating the analysis of informational-value problems into a framework commonly
used (and understood) by production analysts. Our central observation is that decision
making for individuals with linear-in-probabilities preferences is equivalent to decision-
making over closed, convex sets. While this observation is familiar and, by now, trivial in
modern production analysis, its consequences for risk-averse firms and, in particular, for
studying the value of information to such firms do not seem to have yet been appreciated.
But, in fact, this simple realization permits examination of the value of information and the
impact of information provision in their most natural terms, which is the space of proba-
bility distributions, much in the same manner that one obtains an exhaustive examination
of the theory of the price-taking firm in the natural terms of price space.

The second goal of this paper is to use this set up to place bounds on the value of



information for a risk-averse firm and to relate these bounds to characteristics of the
technology and the producer’s preferences. A particularly striking observation that emerges
from this representation is that the most common representation of production uncertainty
corresponds to a polar case that trivializes the role that information can play in economic
decisionmaking under risk.

In what follows, we first introduce our model which includes the specification of an
event-contingent production technology and producer preferences over stochastic outcomes.
We use those specifications to deduce the properties of a utility correspondence induced
by the composition of the two. We then show that it can be appropriately convexified
and used as the basis for the study of decisionmaking. An immediate consequence of
this convexification is a general method for computing the value of information to a risk-
averse firm, which is applicable for both multidimensional and scalar decision variables and
which affords easy calculation of bounds on the value of information and an easy method
for determining when information is valueless. Bounds are calculated and discussed. The

paper then concludes.

2 Technology and Information in a State-Contingent

Framework

2.1 The state space

Uncertainty is modelled by a neutral player, Nature, making a choice from a finite set,
Q of the form ) = 5 x N, which allows for S possible events relevant to production and
N possible signals. A signal n € N, typically, will be taken to correspond to a partition
of ) according to the events {1,,...,5,}. More generally, one can think of this partition
into N signals as the ‘finest’ possible partition of the state space. Coarser partitions of
the state space can be derived by considering the remaining elements of the power set of

{1,2,..., N}. The entire set of partitions can be ordered by inclusion.



2.2 Event-contingent production

Following Chambers and Quiggin (2000), the stochastic technology, which is the same for
all signals,! is represented by an event-contingent output correspondence. Let x € R be a
vector of inputs committed prior to the resolution of uncertainty, that is, prior to Nature’s
choice, and let z € R be a vector of event-contingent outputs also chosen prior to the
realization of s. Thus, if event s is realized, output z, is produced. We confine attention to
the case of a scalar output. The technology is characterized by the event-contingent output
correspondence, which gives the vectors of event-contingent outputs that can be produced

by a given vector of inputs. Formally, it is defined by:

Z(x)={z€ R’ :x can produce z}.

The image of the output correspondence is referred to as the output set.

Several examples illustrate. The most familiar, the simple portfolio-selection problem,
involves no physical production. Let w be an individual’s wealth and suppose that she can
allocate it between a safe asset and a risky asset with stochastic returns r E?Ri . If the
price of the safe asset is normalized to one and the price of the risky asset is p, then, ruling

out any short sales, her state-contingent returns are
Z(z)={z:2s=w—zp+zrs;, SES}.

The action variable x > 0 is a scalar reflecting the quantity of the risky asset that the
individual purchases.?
Our second example is stochastic production characterized by a stochastic production

function of a single variable input

zs < f(x,&5)

'Hence, in this paper we do not analyze the case where the realization of the technology is random, even

though actual production is.
2Note that this version of the portfolio problem does not satisfy the free disposability assumption, Z.2,

imposed below.



where x is the scalar input and &5 is a stochastic input beyond the producer’s control.

Thus,
Z(z)={z:2s < f(x,&5), s€S}.

Here, for example, x might be interpreted as the level of investment that a firm undertakes
prior to the resolution of uncertainty.

An alternative specification of a stochastic technology is offered by

Z(x)z{z:z%zsswx)},

where x is a vector of inputs and v, > O for all s. In what follows, we shall refer to this as the
state-contingent transformation function case. Finally, one could also consider convolutions
of the standard portfolio problem and either of the alternative representations of stochastic
production such as that considered in the simultaneous choice of stochastic production
levels and involvement in a futures or forward market (Danthine, 1978; Holthausen, 1979;
Anderson and Danthine, 1983; Chambers and Quiggin, 2002).

We impose the following properties on the event-contingent output correspondence.

Properties of Z(x) (Z)

2.1 05 € Z(x) for all x e RV z ¢ Z(Oy) for z # Og;

127 < ze Z(x)=17 € Z(x);

2.3 Z(x) is bounded for all x € R} (boundedness);

Z.4. Z(x) is convex for all x € RY;

7.5. Z is a continuous correspondence.

The first part of Z.1 allows for the possibility of output inaction. Regardless of the
level of inputs committed, the producer can always choose to produce nothing in each
state of nature. The second part requires a positive commitment of inputs to realize a
positive output. Z.3 and Z.5 are technical assumptions made to facilitate analysis, while
7.4 intuitively requires that state-contingent output sets exhibit an increasing ‘marginal

rate of transformation’ between state-contingent outputs.



2.3 The utility correspondence and the utility set

Now suppose that the producer is concerned to maximize an objective function that is

monotonically increasing in u € 7 with typical element
us = u(2s, X)

for some function u : R, x RY — RN that is continuous, concave, monotone increasing in

2s and normalized to satisfy w (0) = 0. Define the utility correspondence by

Ux)={u(z,x) e R} : z€Z(x)}

Lemma 1 If Z satisfies Z.1-4, then U satisfies:
U.1u(0s,x) € U(x) for all x € RY;
U2d < uelUx)=uelU(x);
U.3 U(x) is bounded for all x € R ;
U.4 U(x) is convex for all x € RY;

U.5 U 1s a continuous correspondence.
Proof: All proofs are in the appendizx.
Our example technologies illustrate. In the simple portfolio selection problem:
U@)={uwus=u(w—zp+2zrs), scS},

where u is a standard von Neumann—Morgenstern utility function. In the stochastic pro-
duction function case for the Sandmovian model, assuming that the firm must incur a

nonstochastic cost of v to engage effort z :
U@)={uws <u(f(z,&)—vx), scS},

where again u is a von-Neumann—Morgenstern utility function. Both the portfolio-selection
model and the stochastic production function representation are thus special cases of a

utility correspondence of the general form
U(z)={uws <u(h(z,e5)), se&S}.
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The Sandmovian model with a stochastic production function generalizes the simple port-
folio selection model by allowing the action variable to affect the returns from the risky
asset nonlinearly. This similarity allows results developed for the Sandmovian model with
a stochastic production function to be extended directly to the simple portfolio selection
problem (Athey, 2000, 2002). Conversely, Milgrom (1994) has shown that results developed
in the simple portfolio selection problem can be extended directly to the Sandmovian prob-
lem under price uncertainty (this corresponds to the case where the stochastic component
enters multiplicatively in the stochastic production function) under general conditions.
For the convolution of the Sandmovian model and the state-contingent transformation

function, we have

U(x)= {u:usgu(zs—vx), s€ S, Z’yszsﬁg(x)}a

where v is a vector of nonstochastic input prices.
The wutility set, U C R7, is the range of the utility correspondence and can be iden-
tified intuitively with the utility-possibilities frontier familiar from non-stochastic welfare

analysis:
U=U U (x).

Although each U (x) is a closed, convex set, U generally is not. Denote the closure of the

convex hull of U by

U* =cl (conv (U)).

2.4 Some definitions

Our discussion frequently relies on some concepts about convex sets (Rockafellar, 1970).3

For a convex set A, F' C A is an exposed face if there exists a supporting hyperplane to A,

P, such that

PNA=F

3We restrict attention to convex sets, A C R”.




An exposed face that consists of a single point, F' = {a}, is called an exposed point. a € A
is an exposed kink if it belongs to more than one exposed face in A. For an exposed kink,
the notation a {B} means that a belongs to the exposed faces for each of the hyperplanes
in the set B. Figures la, 1b, and lc illustrate each of these concepts.

For any convex set, A, its free disposal hull D (A) is the set of points dominated by the

elements of A
DA ={b:b<a, acA}.
C is said to be a cube if it is the free disposal hull of a single point a, that is,
C=D({a}).

We shall refer to a as the outer vertex of C'in this case.

Suppose two convex sets A and C' have intersecting exposed faces F' and F”, respectively,
for a common supporting hyperplane P. That is, there is a P that supports A and C' and
that satisfies

PNA=F,

PNC=F,
and

FNF #.

In this case, C' is a contraction of A it C C A.

Now, consider these definitions in terms our example technologies. For the simple
portfolio-selection problem Z (z) consists of a single point in 7. It is, therefore, an exposed
face, an exposed point, and an exposed kink. Z (z) for the stochastic production function
case corresponds to the free disposal hull of the single point in R7 (25 = f (x,&5),5 € Q).
Z (x) is thus a cube, and its outer vertex, (zs = f(x,&5),s € ), is simultaneously an
exposed face, an exposed point, and an exposed kink. It is also straightforward to show

that U (z) for each of these specifications inherits these characteristics from its parent
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Z (x). The cubical form of Z (z) for these specifications reflects the fact that the technology
for both of these specifications does not permit substitutability between state-contingent
outputs once a fixed level of effort is committed (Chambers and Quiggin, 2000). For
the simple portfolio-selection model, this is a natural consequence of the fact that the
individual is a small participant in a securities market, who necessarily takes the asset
structure as given. However, in the case of the stochastic production function, it represents
an arbitrary restriction on the stochastic technology which excludes the substitutability of
state-contingent outputs from consideratoin.

To see that not all state-contingent technologies lead to cubical utility correspondences,
notice that Z (x) for the state-contingent transformation function is the free disposal hull

of a single hyperplane in §Ri (a half space). All points on the hyperplane, that is,

{Z : Z’yszs == g(X)}

belong to the same exposed face, and the points where this hyperplane intersect the axes
correspond to exposed kinks. One can easily generalize this technology by replacing the
linear combination of state-contingent outputs by a suitably smooth convex function of
the outputs. Doing so would then yield a technology which possesses exposed points which
are not also exposed kinks. Moreover, even in the absence of this generalization, the U (x)
that emerges from applying the Sandmovian net-returns specification to this technology
does not inherit this linearity property. For w strictly concave, its outer boundary will
consist of a smooth curve that is concave to the origin. Points away from the axes on
this curve will represent exposed points that are neither exposed faces nor exposed kinks.
This smoothness of the frontier reflects the individual’s ability to substitute between state-
contingent outputs for a fixed level of inputs.

To illustrate further the relationship between stochastic technologies, for the scalar
input case consider a stochastic production function f (z,e,) and a state-contingent trans-

formation function defined so that for given =z,

D 76z < S (xe) = g(x).

Z (x) for the stochastic production function, which generates this state-contingent transfor-
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mation function, is itself a cube. It also is a contraction of the output set for the generated
state-contingent transformation function. More generally, consider any convex technology,
A (z), having z =[f (z,e1), ..., f(z,e5)] as an exposed point with supporting hyperplane
defined by the vector . This technology is always a contraction of the output set for the
associated state-contingent transformation function, while the output set for the stochastic

production function always turns out to be a contraction of A (z).

3 Signals and probabilities

The set-up here closely parallels that used in standard discrete-state-space representations
of the information problem (Hirshleifer and Riley, 1992). Because the state space is of the
form Q = 5 x N, the probability distribution may be represented by an .S X N matrix P
with entry ps, corresponding to the joint probability of production event s and signal n.

Let
=2 P
be the unconditional probability of production event s,

Tp = Zpsn

be the unconditional probability of signal realization n,* and

o= Bon
Tn
be the probability of event s conditional on the observation of signal realization n. Then 7°
denotes the vector of unconditional probabilities or prior probabilities and 7" denotes the
vector of probabilities conditional on the observation of signal realization n, or the posterior
probabilities. We confine attention to the strictly positive elements of the unit simplex,
which we denote by P C §Ri +. Thus, the signal is not perfectly informative regarding any
event, and for all s and n, 0 < 77 < 1. We will refer to the set of joint, prior, and posterior

probabilities as an information structure and denote it by 8 . We denote the set of prior

and posterior probabilities for the information structure 6 as I1 (6) = {=x°, ', ..., 7"} .

4More properly, we should refer to this as the signal realization from the finest partition.
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4 The expected-utility function

We assume that the producer’s objective function is of the expected utility or ‘linear-in-

probabilities’” form

s
Z Tsu(2s, X).
s=1

For a given preference ordering over 87 x RY  of feasible outcomes (z,x), consistent
with the expected-utility representation, the choice of u is determined up to an affine
transformation. It is therefore possible to choose an appropriate normalization for the

purpose of analytical tractability. Given an initial position consisting of a probability

0 0

vector 7 and an input-output vector (z°,x"), a natural normalization is u(0,0) = 0,

S (2, x%) = 1.

Define the input-restricted expected utility function,” V : P x RY — R, by

s
V(m,x) = Mazx, {Zﬂsus ‘u EU(X)}.

s=1
The input-restricted expected utility function is the (maximal) support function for U (x).
Consequently, it is entirely analogous to a ‘revenue function’ for U (x) given the ‘prices’,
.

It is particularly interesting to note that in the case of either the simple portfolio
selection model or the stochastic production function representation, the input-restricted

expected utility function corresponds to a trivial maximization problem, whence

S

V(mz) =) mauh(z.e).

s=1

When the technology is given by the state-contingent production transformation specifi-
cation and other more general specifications, isolating the input-restricted expected utility
function involves a less trivial maximization problem. This, perhaps, can be seen most
intuitively by considering the convolution of the state-contingent product transformation

specification and a separable effort utility specification, that is,

u(zs —vx) =u(zs) —v(x).

5We thank David Hennessy for suggesting this terminology.
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In this case, we have
V(m,x)=N(v,9x);m)—v(x),

where N (m,g(x)) is the indirect utility function familiar from nonstochastic consumer

theory when preferences are additively separable:

S
N(v.g(x);m) = sup {Zwu (z): ) Vs < g (X)} -

N is convex in 7, quasi-convex in -, and, given strict risk aversion, concave in g.

The expected utility function, W : P — R, is defined by

s
W(m) = sup {Zﬂsus Tu EZ/{}

s=1
= sup{V (7, x)}.
We assume that solutions always exist and that V (m,x) and W (=) are finite.

Both V (m,x) and W (7r) are convex and continuous on P (Fire, 1988). Denote

s
a(mw,x) = argmaX{ZWsus ‘u EU(X)}a

s=1

s
u () = arg sup {Zﬂsus ‘u EZ/{},

s=1

and
x (mw) € argsup{V (7, x)}.

i (m,x) and u () are exposed faces of U (x) and U*, respectively, defined by hyperplanes
with normal @ . By analogy with the theory of profit maximization, in the case when they
are singletons, one may think of @ (7r, x) and u (7) as vectors of supplies of state-contingent
utilities.

Because U (x) is convex and satisfies U.1-U.5, it may be recaptured from V' by applying
the duality mapping (Féare, 1988)

s
U((x)=nNg {U:Zmus < V(ﬂ',x)}.

s=1
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Generally, it will not be possible to recapture U by a similar duality mapping. However,

W is the support function for U*, whence

s
U =N, {U:Zmus < W(ﬂ')}.
s=1

U™ is observationally equivalent to U for individuals with linear-in-probability preferences.

5 The value of information

As usually defined, the value of information for a productive firm is the difference between
its optimal expected utility as evaluated using the prior probabilities and the ex ante value
of expected utility obtained from the posterior distribution. We adopt the same definition
here and distinguish two notions of the value of information: the wvalue of the nth signal
and the value of the information structure 6 . We will also distinguish between the case
where the input bundle is fixed and the case where the input bundle is freely variable in
response to the reception of different signals.

The latter decomposition is important for several reasons. First, it permits a conve-
nient analytic decomposition that is particularly appropriate for state-contingent models.
One can visualize the firm, in much the same fashion as the Slutsky decomposition of
a consumer’s response to a price change, as responding to the provision of information
by first moving around its transformation curve to get the most out of its current input
bundle, and then adjusting that input bundle optimally. The analogy with the Slutsky
decomposition becomes more apposite when one recalls that probabilities are interpretable
as the producer’s internal prices of state-contingent utilities.

Even more importantly, however, such measures are of practical concern. For example,
consider the case of a firm that is contractually obligated, either as the result of negotiations
with a union or other firms, to employ a fixed bundle of variable inputs in combination
with its quasi-fixed capital stock. Is information ever of value to the producer after he has
made these input commitments? Intuitively, one would think that the answer would be
yes, but less valuable then when the producer has free rein to adjust his inputs optimally.

This decomposition permits a formal analysis of such effects, and as we show below, the

12



most familiar specification for risk-averse firms forces the answer to our rhetorical question
to be no.
The value of the nth signal for the fixed input bundle, x , is

A(W”,WO,X):V(W X) sup {Zﬂ' us} >0,

uEu(7r0 X)

where the inequality follows by the definition of V. In words, A (", w%, x) is the difference
between the optimal expected utility, as calculated for the posterior probabilities, and the
producer’s best alternative, using the posterior probabilities, given the input commitment
he has made for the prior probabilities.

The value of the information structure 0 for the fived input bundle x, I (0,x) , is the
difference between the producer’s ex ante expected utility when he has access to the entire
information structure and his expected utility when he knows only the prior probabilities.

More formally,

where second equality follows because 7 = > m, 7",

Similarly, the value of the nth signal is defined

1) = Y mA(n",70)

6 Bounds on the value of information

We now consider bounds on the value of signals and the value of the information structure

for a given technology and preferences. The classic results of Blackwell (1951) show that,
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for expected-utility preferences, the value of information can never be negative. This result
follows directly from the fact that expected-utility preferences are linear in the probability
vector m. The Blackwell result relies on the assumption of expected-utility maximization
which implies that preferences are linear in probabilities.

The fact that zero is a lower bound for the value of information is well-known. By
contrast, to our knowledge, there has been relatively little discussion of upper bounds, or
of the conditions under which upper and lower bounds are attained. Theorem 2 addresses

the first issue.

Theorem 2

V(ﬂ'O,X> <max{7r—£, ,%}—1) EA(W”,WO,X)>O,
7§ e
SV (7%, x) <max{% ,%”}—1) > 7(6,x) >0,
- 1 S
W(ﬂ'0> <max{7r—£, ..,%} — 1) > A(ﬂ'”,ﬂ'o) >0,
m Ts
0 P pas|
Znnw(w)<m {W?, ,W%} 1>>I(6)>0

Signals and information generally are most valuable when the input-restricted ex-
pected utility function and the expected utility function take, respectively, the forms
V (7%, x) max {i—é, e Z—g} and W (w") max {i—é, e Z—g} This corresponds naturally to the
case where the frontiers of U and U™ are linear. In that case, even the smallest changes in
probability distributions will lead to large changes in the choice of state-contingent utilities
and hence in state-contingent outputs.

On the other hand, signals and information are least valuable when the expected utility
function is linear over a range of probability distributions. By standard results from duality
theory (McFadden, 1978), linearity in the expected utility function maps directly into kinks
in the frontier of U or U*. The existence of a kink implies that the producer takes the
same action in response to a range of possible signals. The linearity property of expected
utility then implies that the lower bound of zero is attained.

We pursue this point formally in the following theorem and corollaries.

14



Theorem 3 A (7", 7% x) = 0 if and only if 0 (w°,x) contains an exposed kink in U (x)
for (7", w%) . T(0,x)=0 if and only if U (x) is a contraction of
WEH(G) { Zﬂ—sus S SUOP {Zﬂ—sus}} .
a(mYx) s

0

Corollary 4 Suppose i (mw°,x) is unique, then I(0,x) = 0 if and only if t (w°,x) is an

exposed kink for 11(0).
Corollary 5 I(0,x) =0 for all information structures 8 if and only if U (x) is a cube.

It is well-known that the value of information is always nonnegative. In addition, we
derive an important consequence of the preceding theorem and corollaries for the most

commonly studied class of models, that is:

Zﬂ's (z,e5)).

We have:

Corollary 6 If V (7w,x) = Zle meu(h(z,&5)), the lower bounds on A (7", w°, x) and

I(0,x) are achieved for all information structures.

In either the portfolio selection model or the stochastic production function representa-
tion, acquiring information is worthless unless the producer can simultaneously adjust his
actions. Thus, this class of models allows information to have only a minimal impact on
the risk-averse firm. In the portfolio selection model, this is a natural consequence of the
fact that a small individual cannot, by definition, affect the risky assets that are available
in the market. The discipline of the market limits his or her range of actions, and his or
her only possible response to the acquisition of new information is to alter the portfolio
mix. Without that ability, the new information is valueless.

In the stochastic production specification, this inability to adjust emerges not from
market forces, but from an arbitrary restriction on the technology. Producers in this
model don’t respond to the new information not because they don’t want to, but because

they have been assumed not to. If this structural restriction were accurate, it would imply,
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for example, that firms which are contractually or otherwise obligated to a particular
input bundle would not value, and therefore not expend positive resources to acquire
finer information. This seems implausible and suggests that models of this sort should
be viewed as a polar case, which minimizes the role that information can play. Certainly
models employing this assumption will systematically underestimate the true economic
value of information. Thus, empirical models of the value of information based upon such
a specification have an identifiable downward bias in their evaluations.

Corollary 6 also explains the close connection that has emerged between results on the
value of information, the response of input utilization to new information, and various
forms of supermodularity of the objective function in the generalized portfolio model.® In
this specification, nothing can happen unless the input adjusts, otherwise the information
is always valueless. Moreover, once the input is determined, the complete rank-ordering of
state-contingent outputs and utilities is known, and given appropriate supermodularity or
log supermodularity restrictions, so is the rank-ordering of the state-contingent marginal
utilities of input variation. Hence, any tightening of the output distribution or the u
distribution is inextricably entangled with an expansion effect on outputs or utilities caused
by the input adjustment. Thus, determining the impact of new information, in the form
of a signal, on input utilization or the level of investment then reduces to determining
how that new signal changes the expected value of the rank-ordered (by supermodularity)
state-contingent marginal utilities.

To appreciate how the ability to substitute between state-contingent output interacts
with the producer’s attitudes towards risk in determining the value of information in a
more general model, let us consider, for concreteness, the separable utility version of the
state-contingent transformation function under polar assumptions about risk aversion. For
the limiting case where @ (2) = z (risk neutrality), we obtain

V (m,x) = g(x)Max{ﬂ,...,@} —v(x),
1 Vs

5These findings are exhaustively categorized in a series of elegant papers by Athey (2002) and Athey
and Levin (1998, 1999). Although their specification is for a continuous state space and is in terms of a
parametrized distribution function, in a finite state space, it can be made formally equivalent to ours by

inducing distributions for the state contingent outputs from the technology and the probabilities.
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so that

n n 0
16.0=000 | L matae {0 agae [T T
- T Vs T Vs

which is positive so long as g (x) is. For the polar case of complete aversion to risk, we

obtain, in the limit,

g(x)

Zs ’ys

and I (,x) = 0 for all x (including the optimal x). In the latter case, information is not

V(ﬂ',X): _U(X)v

valuable to the producer because it never affects his desired consumption pattern, which is
chosen to eliminate variation in consumption. Hence, as in Corollary 6, we always achieve
the lower bound on the value of information.

Turning to the overall value of information, exactly parallel arguments reveal:

Theorem 7 A (n",7°) = 0 if and only if u(mw®) contains an exposed kink in U™ for
(7w, w%) . I(0) =0 if and only if U* is a contraction of

WGH(G){ Zﬂsus < sup {Zﬂsus}}.

u(mw9)

Corollary 8 Suppose W is differentiable at w°, then I (0) =0 if and only if u(w°) is an
exposed kink for 11(0).

Corollary 9 I(0) =0 for all possible information structures if and only if U™ is a cube.

When W is not differentiable at ¥, there is not an unique optimal solution for the
prior probabilities. Hence, in that case, the exposed face of U* must be at least locally
linear. If either a signal or an information structure is to be valueless, however, the
hyperplanes defined by the associated posterior distributions must pass through at least one
exposed kink in the exposed face. When this happens, varying the posterior probabilities
brings no adjustment on the part of the producer. However, when W is differentiable
at 7%, information can only be valueless if the optimal solution for the prior distribution
corresponds to an exposed kink for the entire range of posterior probabilities.

We conclude this discussion on the general value of information with
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Corollary 10 For an information structure 6, the following are equivalent:
(i) I(0)=0;
(it) W 1s linear on I1(6);
(111) For all ®" € 11(6), A(w",w%) = 0.

Conversely, the upper bound in Theorem 2 is attained when

U = {u:gﬂgus SW(WO)}.

These results illustrate the duality between the utility correspondence U* and the be-
havior of the preference function W on I1(#). When W is linear, U* is cubical and informa-
tion is valueless. Conversely, information attains its maximal value when the boundary of
U~ is a hyperplane passing through W (°). Our final result identifies a general condition
on the stochastic production function specification to yield zero information generally, that

is, for U™ to be cubical.

Theorem 11 For the specification
Vme)=) mau(h(z,e)),

information always has zero value if

Wi(mr) = sup{Zﬂsu(h(x,as))}
= ) mesup{u(h(z,£))}.

Corollary 12 If u(h(x,e5)) = f(m(x) + g(es)) with f monotonic increasing, then in-

formation is always valueless.

The corollary shows that information is always valueless, for example, for the case of
a stochastic production function with additive error. Also notice that the corollary and
the Theorem remain true if scalar x is replaced by a vector x. The upper bounds derived
depend on the assumption that the outcome space is assumed to be .. Broadly speaking,
this is equivalent to ruling out short-selling in a portfolio choice problem. In general, if the
outcome space is unbounded, and the utility correspondence is linear (that is, bounded by

a hyperplane), the value of information is unbounded.
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7 Concluding comments

Much previous analysis of the value of information for a risk-averse producing firm has
focused on cases where the recipients of information must select a single scalar decision
variable, which may be either an element of an interval in the real line or a member of
a discrete set of options. In particular, in the case of production decisions, the assumed
technology has almost universally been a stochastic production function, in which the set
of feasible state-contingent vectors is a one-dimensional manifold, indexed by the input
level.

In such a setting, many of the most important uses of information cannot be represented
directly. For example, the observation of a signal that reduces the posterior probability
of one event and increases that of another does not give rise to opportunities to ‘bet’
on the event with increased likelihood, by increasing output conditional on that event
while reducing output conditional on the event with reduced likelihood. The only feasible
response is to increase effort and output in response to ‘good’ news, while reducing effort
and output in response to ‘bad’ news. Limits on the value of information therefore arise,
in large measure, from limits on the range of actions available to producers.

As in many other problems, a more general representation is also more tractable. The
stochastic production function technology is a special case of the general state-contingent
production technology first modelled by Arrow and Debreu. For this general model, it is
possible to exploit the idea that relative probabilities behave like relative prices, with the
associated duality relationships. Observation of a signal is similar to a change in relative
prices, which in the state-contingent production framework yields a natural characteriza-
tion of the value of information in terms of convex sets. In particular, it is straightforward
to derive upper and lower bounds for the value of information and rankings of the valuation

for alternative problem settings and information structures.
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9 Appendix: Proofs of Results

Proof of Lemma 1: U.1 follows from Z.1. U.2 is a consequence of the monotonicity of
the utility function and Z.2. U.3 follows by the continuity of the utility function and Z.3.

Suppose that z°,z' € Z(x), then, because u is concave,
Au (zg,x) +(1=-MNu(z) <u ()\zg +(1—N)z,x),

for all s. The right-hand side belongs to U (x) by Z.4, and the left-hand side, along with
U.2. establishes U.4. U.5 follows from the continuity of Z and the continuity of u .
Proof of Theorem 2: The proof is for A (7", 7%, x). An exactly parallel proof applies

to the remaining expressions. By the definition of V,

U((x)C {u:ngus < V(']TO,X>}.

Thus, V (7, x) must be bounded from above by

1% (w,x) = max {Zﬂsus: Zﬂgus <V (WO,X>}
_ 0 mo7s
= V(Tl' ,X)max{ﬂl,...,ﬂg},
and hence the maximum value of information is
A (71',71'0,X> =V(mx)—V (WO,X> =V (WO,X> [max {Zé, - %} — 1] .
1 s

Proof of Theorem 3: Suppose

0

Hence, @ (7%, x) must contain at least one element that belongs to faces of U (x) for both 7°

and 7. Conversely, if @i (¥, x) contains an exposed kink in U (x) for (7", 7°), A (7", 7°, x)
cannot be strictly positive. For the second part, suppose to the contrary that there exists
a feasible u such that

Zﬂ' Us > SUp {wajus}

a(mw0,x)
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for any n. Then I (8,x) > 0.
Proof of Theorem 11: By Corollary 9, I (6) = 0 for all 8 if and only if U™ is a cube. In
this specification, for this to be true, there must then exist a single point @1 € R (optimal

for all 7) such that
u(h(x,es)) < us
all £ and s. This is always true if
u(h(z,e5)) < sup{u(h(z,e5))} < U

all s.

23



