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“Duality is about the choice of independent variables in terms of which one defines a
theory”. That quote from Gorman (1976) is approaching its thirtieth anniversary. In the
interim, dual methods have percolated throughout economics. Almost universally, they
have helped clarify fundamental aspects of individual behavior, while replacing manipula-
tion of first and second-order conditions with more elegant, and transparent, representa-
tions of equilibrium behavior.

Some areas remain relatively untouched. One such area is the economics of (risk-averse)
individual decisionmaking under conditions of risk or uncertainty. This is particularly true
for firms that face incomplete markets. The conventional wisdom seems to be that, in the
absence of complete markets and unique state-claim prices, the fundamental nonlinearities
of the firm’s preference sets and its choice sets are inextricably entangled. Thus, most
treatments of financial market equilibrium and, more generally, of market equilibrium for
incomplete markets are in primal terms.

This paper presents a dual representation of firm-level and market-level equilibrium be-
havior for a sole proprietorship economy with competitive and frictionless financial markets
and stochastic production opportunities in a two-period setting. Apart from the slightly
richer specification of current period input space used here and some resulting notational
differences, the world envisioned is the same as that modeled in Milne (1976, 1995) and
Magill and Quinzii’s (1995) sole proprietorship models.

A sole proprietorship economy is, of course, unrealistic. Nevertheless, it represents
an important benchmark that captures the essence of many of the problems faced by
producing firms in a stochastic world. In particular, the link between asset pricing and
real resource allocation is clearest in this simple setting. Thus, a sound understanding of
its nature is essential to comprehension of more realistic market settings.

The sole proprietorship model fuses two frequently distinct models, that of an investor
facing frictionless markets and that of the firm facing a stochastic production technology.
Detailed comparative-static analysis has proved particularly elusive in this framework even
under the implausible assumption of expected-utility preferences and strong restrictions

on the firm’s stochastic technology. As Cochrane (2001, p.43) has noted:

We routinely think of betas and factor risk prices ... as determining expected



returns. But the whole consumption process, discount factor and factor risk
premia change when the production technology changes. Similarly, we are on
thin ice if we say anything about the effects of policy interventions, new markets

and so on.

Our conceptual approach is closely related to dual general-equilibrium trade models
(Dixit and Norman 1980; Woodland 1982). It differs from Milne’s (1976, 1995) elegant
induced preference approach in that we consider dual representations of the producer’s
choice set and preferences over the space of present-value prices rather than indirect rep-
resentations of technologies and preferences induced over asset space. Because the firm’s
present value prices (risk-neutral probabilities, stochastic discount factor, virtual state-
claim prices, state-claim densities) are the essential building blocks of most asset pricing
theories, they are a natural choice of dependent variables in terms of which to define a
dual theory of financial market equilibrium.

The treatment of firm-level equilibrium present here is essentially equivalent to the dual
treatment of autarkic equilibrium and nontraded goods equilibrium in Woodland (1982).
Our market-level equilibrium is equivalent to the dual treatment of a trading equilibrium
between several large countries. That said, our results do not simply translate trade results
to finance and production theory. The behavioral implications of the structure of the firm’s
choice set implied by the coexistence of a stochastic, but convex, production technology
and a frictionless financial market are quite different, and in some ways considerably richer,
than what emerges from basic trade theory.

In what follows, we first introduce some basic notation and concepts. Then we in-
troduce the stochastic technologies and the frictionless asset market. Three distinct cost
functions and their dual present-value profit functions are discussed next. One pair, the
derivative-cost function and its dual present-value profit function, are relatively new to the
literature on stochastic choice and thus are of interest in their own right. Each representa-
tion, however, proves useful at different points. We then formulate a dual representation
of firm-level equilibrium for firms taking current period input and asset prices as given.
The key component is the depiction of the firm’s equilibrium present-value price vector as

the fixed point of the subdifferential of one of the dual cost structures. This representation



clarifies the nexus between resource allocation and asset pricing for the sole proprietorship
firm. A consequence of its simplicity is that comparative-static analysis proves straight-
forward. We illustrate by first developing firm-level endowment comparative-static results
that appear to generalize existing results. Then, firm-level comparative statics of input
price change and technical change are considered. A dual economy equilibrium is then
formulated. The dual equilibrium model is then used to state conditions for the firms’ pro-
duction choices to be independent of their risk preferences in equilibrium. These conditions
entail Pareto optimality, but do not require either that the firm’s consumption choices lie
within the span of financial markets or the assumption of an extreme version of linear risk
tolerance. Illustrative general-equilibrium comparative static results are stated, and the
substantive part of the paper concludes with a demonstration of a dual and probability-free
decomposition of the economy-level cost of idiosyncratic risk. Concluding comments are

then offered.

1 Notation and Preliminaries

Denote the unit vector by 1 € §Ri For a convex function ! f: % — R, its subdifferential’

at m is the closed, convex set:
Of (m)={k eR’: f(m)+k(m'-m) < f (m') for all m'} . (1)

The elements of 0f (m) are referred to as subgradients. If f is differentiable at m, 9f (m)
is a singleton and corresponds to the usual gradient. Conversely, if 0f (m) is a singleton,
f is differentiable at m.

For f convex, its convex conjugate is denoted

£* (k) = sup {km—f (m)} .

!These results on convex functions are all drawn directly from Rockafellar (1970).
2We shall use the same notation to denote superdifferentials of concave functions.



If f is proper and closed,® then f* is also a proper and closed convex function and

f(m)= Sup {km—f" (k)}, (2)
and, on the relative interior of their domains,

k € 9f (m) & m € 9f" (k). (3)

2 State-Contingent Technologies and the Asset Struc-

ture

We model K sole-proprietorship firms facing a stochastic environment in a two-period
setting. The current period, 0, is certain, but the future period, 1, is uncertain. Uncertainty
is resolved by ‘Nature’ making a choice from Q = {1,2,...,S}. Although we do not use
probability measures in what follows,our results may be interpreted in these terms, with
the space of random variables given by ¢ = R°. Each element of  is referred to as a
state of nature.

Firms have access to a stochastic production technology which transforms current pe-
riod inputs into stochastic period 1 output. They also have access to competitive financial
markets which transform asset purchases made in the current period into stochastic payofts
(denominated in the units of the output) in period 1.

Each firm’s technology is represented by a single-product, state-contingent input cor-

respondence.*

To make this explicit, let x € RY be a vector of inputs committed prior
to the resolution of uncertainty (period 0), and let z € %7 be a vector of ex ante or
state-contingent outputs also chosen in period 0. If state s € ) is realized (picked by
‘Nature’), and the producer has chosen the ex ante input—output combination (x, z), then

the realized or ex post output in period 1 is zs.

3 f is proper if f (x) < oo for at least one x, and f (x) > —oo for all x. A proper convex function is closed

if it is lower-semicontinuous.
“For a generalization to the multiple-output case, see Chambers and Quiggin (2000, Chapter 4). Our

results extend straightforwardly to that case.



The continuous input correspondence,” X : §Ri — RY | which maps state-contingent

output vectors into input sets that are capable of producing that state-contingent output

vector, is defined by
X (z) = {x € ®Y : x can produce z}.

We impose the following properties on X (z):

X.1 X (Opres) = RY (no fixed costs), and 0 ¢ X (z) for z > 0 and z # 0 (no free lunch).

X27z<z= X (z) C X(Z).

X3AXX2)+(1-M)X(Z)SXAz+ (1—-N)Z) 0< A<

X.4 X is continuous.

The first part of X.1 says that doing nothing is always feasible, while its second part
says that realizing a positive output in any state of nature requires the commitment of
some inputs. X.2 says that if an input combination can produce a particular mix of state-
contingent outputs then it can produce a smaller mix of state-contingent outputs. X.3

ensures that the graph of the input correspondence
T={(x,2z):xcX (z)},

is convex and thus exhibits diminishing returns.

Period 0 prices of inputs of x are denoted by w €RY and are non-stochastic. The firm’s
current period (nonstochastic) wealth is mo and its (stochastic) endowment of period 1
wealth is denoted by m € §°.

Financial markets are frictionless, and the ex ante financial security payofts are given
by the S x J non-negative matrix A. Without any true loss of generality, we shall assume
that A contains no redundant assets.® The vector of state-contingent payoffs on the jth
financial asset is denoted A; € R%, and its price is denoted v;. Denote the span of the
matrix A by M. The firm’s portfolio vector, corresponding to the period 0 purchases of

the financial assets, is denoted h € §”.

®Each of the k = (1, ..., K) firms potentially have access to a unique production technology, so that X

should be subscripted by k, but where there can be no confusion we shall suppress that subscript.
5This is for notational convenience. Allowing for redundant assets would not affect the analysis, but it

would force us to restate several of our results in terms of the basic assets.



Firm preferences over consumption in the current period yo and period 1 consumption,
y € §Ri, are given by the ex ante preference function u (yo,y). We take u to be strictly
increasing in all arguments and quasi-concave. Each firm’s problem, therefore, is to

max {u (yo,y):yYo=mo—wx —vh,y<m-+z+ Ah,x €X (z)}. (4)

x7z7h7y

3 Three Cost and Three Present-value Profit Func-
tions

In this section we consider three cost functions. T'wo, the production cost function and the
arbitrage cost function, are well-known from the production literature and the asset pricing
literature, respectively. The third, which is derived from the first two, and is referred to
as the derivative-cost function, is less well-known but proves crucial in developing our
arguments. To motivate interest in these cost functions, note that any firm solving ( 4)

also solves:

~ ~

m&x{u(mo _C(W7V7Y)7y+m)}v
where
C’(W,v,jf):H}}in{wx+vh:Ah+z2§f,X €eX (z)} (5)

is the derwative-cost function. If the firm behaved otherwise, at the optimal ¥ + m, there

would exist a technically feasible (x/,z’, h’) capable of generating y but for which
wx +vh' < C(w,v,y).

This implies the existence of an arbitrage, which is inconsistent with equilibrium.
As later developments imply, a complete treatment of equilibrium could be developed
directly in terms of C. However, a closer examination of the structure of C illuminates firm

equilibrium behavior. Therefore, we now consider constituent parts of C.



3.1 The production cost and present-value profit functions
Dual to X (z) is the production cost function, c: R x R — R,
c(w,z) =ming{wx:x € X (z2)} we¢& §RJX

if there exists an x € X (z) and oo otherwise. Mathematically, c(w,z) is equivalent to a
multi-product cost function familiar from non-stochastic production theory (F &re 1988).
If the input correspondence satisfies properties X, ¢(w, z) satisfies (Chambers and Quiggin,
2000): c(w,z) > 0, ¢(w,0s) =0, and ¢(w,z) > 0forz>0,z # 0; z° > z = ¢(w,z°) >
c(w,z); and c(w,z) is convex on R and continuous on the interior of the region where
it is finite. Moreover, c is superlinear (positively linearly homogeneous and concave) in w

and satisfies Shephard’s lemma, which in terms of superdifferentials can be expressed as
x € argmin {wx:x € X (z)} & x € Owc(w,z), (6)

where subscripts on superdifferentials or subdifferentials give the argument with respect
to which the differential is taken.
Consider a vector of present-value prices for period 1 consumption, q € §Ri The convex
conjugate of c,
¢ (w,q) = sup{qz—c(w,z)},

is the present-value profit-function for the present-value ‘price’ vector q. Let z’ € arg sup {qz—c (3

then
qz — c(w,z') > qz—c(w,z)

for all z, and hence q € 9,c(w,z'). Thus, by (3) 2z’ € dq¢" (W, q), which restates the first
part of Hotelling’s lemma in terms of subdifferentials. Now note that (6) then implies the

second part
X € Owe(w,2'), 2z’ € 04¢" (W,q) & —x € Iuc” (W,q) (7

so that present-value profit maximizing demands can be obtained directly from ¢* (w,q).

Denote the set of present-value prices for which present-value profit is finite by

P(W):{qeﬁ%i:c*(w,q)<oo}.



3.2 The arbitrage cost and present-value profit functions

Dual to the financial asset structure is the minimal valuation (for example, Prisman 1986;

Ross 1987) p: ®] x R — R defined by the linear program
p(v,r)=min{vh: Ah >r},

if {h: Ah > y} is nonempty and co otherwise.” Here the notation is meant to remind the
reader that p(v,r) is the price of the cheapest portfolio that dominates r.

p(v,r) is mathematically equivalent to a multiple-output cost function for a linear
production technology. Thus, we refer to it as the arbitrage-cost function. In financial
applications, p is usually viewed exclusively as a pricing or a valuation function, and its
functional dependence upon v is, therefore, suppressed. However, this dependence proves
important in characterizing equilibrium. Because it is a cost function, its properties in v
are well-known. It is superlinear in v and moreover, the optimal asset holding h (v, r) for

a desired r satisfies
h(v,r) € Oyp(v,r). (8)

Its basic properties in r are also well-known. It is sublinear ® in r and p(v,0) < 0.
In addition if r is translated in the direction of any of the basic financial assets, its value

increases by exactly the asset price times the length of the translation. More formally,
p(v,r+0A;) =p(v,r)+bv;, 6c & (9)

An important consequence of this property for our future analysis is detailed in the fol-

lowing lemma:

Lemma 1 d.p(v,r+1t)= 0p(v,r) fort eM.

"By the fundamental duality theorem of linear programming:
p(v,r) =max{qr:qA < v},
a

so that it is also interpretable as the upper arbitrage bound on r. Similarly, in the absence of arbitrage

—p (v, —r) is interpretable as the lower arbitrage bound on r.
8Sublinearity is trivially established from the dual linear program for p, which shows that p is the support

function for the convex set {q:qA < v}.



Proof By definition

Ip(v,r+6A;) = {q:p(v,r+6A;)+ q@'+6A;— r+6A;]) < p( v,r'+6A;) for all r'+6A
= {q:p(v,r)+q@'—r) < p(v,r') for all '} = dp(v,r),
where the second equality follows by (9). For any ¢ € M there must exist an unique

h such that # = Ah (recall A contains no redundant assets by assumption). Apply

the above recursively to obtain the result.ll

The absence of arbitrage can be defined formally in terms of p(v,r) (Prisman 1986;
Ross 1987). There is an arbitrage if there exists either a portfolio priced at zero for which
r > 0 but r #£ 0, or if there exists a negatively priced portfolio for which r = 0 (Ross 1976;
Prisman 1986; Ross 1987; Magill and Quinzii 1995; LeRoy and Werner 2000). Thus, the
absence of an arbitrage requires p(v,r) > 0 for r > 0 with r # 0 and p(v,0) > 0. By the
latter and the basic property that a portfolio yielding the zero asset cannot have a strictly
positive price, p(v,0) < 0, the absence of an arbitrage implies that p(v,0) = 0.

Dual to p is the present-value arbitrage profit function defined as the convex conjugate

of the arbitrage cost function

p"(v.q) =sup{gr—p(v,r)}.
Because p is sublinear over r, it equals either 0 or co. By conjugacy, therefore,
p(v,0) = sup{-p" (v,q)}
q
— it {y (v, )}

The absence of an arbitrage, thus, requires that there exist a set of present-value prices,

N (v), such that
N (v)={aq:p" (v.q) =0}.

N (v)is the set of no-arbitrage prices implied by the asset structure A and v. Alternatively,
they can be characterized by

q € Gp(v,0)
= {qeR}:qA=v}.

9



By (9), it follows for any €M that
p(v,t) = p(v,0+T)
= p (V, 0+ Aﬁ)
= p(v,0)+ Zﬁjvj.
J
The absence of arbitrage requires p(v,0) = 0, so that for any + e M
p(v,t)= vh.

Hence, in the absence of an arbitrage p is linear on M (Prisman 1986; Ross 1987; Clark
1993). Because p is linear on M, the Riesz representation theorem implies that there is an
unique element of M, q (v), such that

p(v,r)=q(v)r, reb.

We refer to q (v) as the pricing kernel for M. Concretely, q (v) is the orthogonal projection
of N (v) onto M and is given by

q(v)=v(A'A) A

3.3 The derivative-cost and present-value profit functions
Now return to the cost structure defined by (5), which for convenience we repeat here
C(w,v,y)= ngin{wx—kvh cAh+z>y,xeX (z)}.

C is the lowest cost that the firm must incur to raise at least y. Although we suppress it

notationally for the moment, it is good to recall that C' is firm-specific because it depends

on the firm’s technology.

The derivative cost problem can be conveniently rewrittten
C(w,v,y) = H}}in{c( w,z)+vh:z+ Ah >y}

= min{c(w,z)+p(v,r):z+1r>Yy}.

C is a cost function. Therefore, it is superlinear in (w,v) and satisfies versions of
Shephard’s Lemma. We now detail its properties in y. (A proof with further properties is
presented in Chambers and Quiggin 2002.)

10



Lemma 2 C satisfies: 1) C(w,v,y) is a nondecreasing, convex function of y that is
continuous on the interior of the region where it is finite, 2) C'(w,v,0) < 0, and 3)

C (W,v,y+ 6Aj) =C(w,v,y)+ ov;.

Lemma 2.1 ensures that standard methods from convex analysis can be invoked in
analyzing C. The firm’s present-value function is the convex conjugate of C. More formally,

for q € R7,
C* (Wv v, q) = Ssup {qy_c (Wv v, Y)}
y

= sup {qy—min{c(w,z) +p(v,r)ir+z> y}}
y r,z

— sup{ay—c(w,z)—p(v.r):r + 2>y}

y7r7z

= sup{qr —p(v,r) + qz—c(w,z)}

r,z

o qEN(V)
c(w.q) qeN(v)

By conjugacy, therefore,
Theorem 3 [fC (w,v,y) > —00, then C (w,v,y) = sup, {qy—c" (W,q) : q EP (W) NN (v)} .

As long as C is finite, it equals the maximal value, taken over P (w) NN (v), of the
difference between the firm’s valuation of y and its present-value profit. Put another way,
it is the upper bound that the firm attaches to its portfolio and production cost given that
its preferences lead it to a choice of y. Because the firm’s shadow price of z is ¢(w,z),
C (w,v,y) thus places an upper bound on the firm’s valuation of y. The corresponding

lower bound is

igf{qy—c* (w,q):q € P(W)NN(v)}.

These bounds are interesting in their own right. They bound the firm willingness to pay
for and willingness to sell y. Thus, they are crucial in asset valuation. Because they restrict
attention to present values belonging to both and A (v) and P (w) instead of just A (v),

they provide tighter bounds on nonreplicable assets than the more familiar no-arbitrage

11



bounds. Because the technology is firm-specific, the bounds are potentially firm-specific.
These bounds can be extended to develop even tighter bounds by incorporating further
restrictions on the acceptable volatility of q.as in Bernardo and Ledoit (2000) and Cochrane
and Sad-Requejo (2000).

Theorem 3 has other implications. First, for C' to be consistent with a reasonable
equilibrium, the firm’s subjective present-value prices can only assume values that permit
neither a financial arbitrage nor a production arbitrage, that is, q € P(w) NN (v). For
strictly convex technologies, this restriction is not problematic. But if the technology is
not strictly convex, then at the firm level problems can arise if P (w)NAN (v) = 0. In that
case, arbitrages exist between the production technology and the financial structure. Such
arbitrages cannot prevail in a market equilibrium. Either no market equilibrium would
exist or (w, v) would adjust to eliminate them.

Arbitrages between the production technology and financial markets can be illustrated
by two polar cases. Suppose that the production technology has isocost curves which

exhibit perfect substitutability between state-contingent outputs of the form?

c(w,z)=p(w)z.

Then P(w) = {q:q < p(w)}, and a strictly positive output can emerge in state s (and
be consistent with zero profit) if and only if ¢; = p, (W) . Suppose also that there exists
only a single financial asset, A;, so that A" (v) = {q: qA; =v;}. Unless P (w) intersects
the hyperplane N (v), arbitrarily large present-value profit opportunities exist for the
production technology at q € M (v).

9This technology is a special case of what Chambers and Quiggin (2000) refer to as a ‘state-allocable’

technology.

12



Maintaining the same asset structure, now suppose that!®

c(w,z) =~ (w)max{czi,...,Cs2s} .

Present-value profit maximization for q € §Ri , requires that firms be technically efficient

so that in the optimum

5]
Zs — —ZX1
Cs

for all s. Thus, firms facing q € §Ri +, this technology, and this asset structure solve

max {h1 (qA; —v1) + (qc” — a7y (W) 21},

hi,z1

with z; > 0, where ¢* = (1 a C—l) M There exists a finite present-value profit (equalling

702, ceey cs

zero) for some q if and only if
{a:qA;=wvn}N{g:qc” <ay(w)}#0.
Suppose that the firm operates its technology at the level
2" =min{z >0:2c" > A}

to produce a financial claim that dominates A;. The cost to the firm z*¢;y (w). Because

this resulting financial claim dominates A, it must fetch a per-unit price of at least v;.

v1
c17(w)

Otherwise, an arbitrage exists. Thus, if > z*, an arbitrage opportunity exists which
offers an unboundedly large profit to the producer.
When P (w) NN (v) # 0, Theorem 3 reconfirms the Fisher separation theorem (Milne

1995; Magill and Quinzii 1995). Firms maximize present-value profit from both financial

This technology is dual to a stochastic production function with a multiplicative productivity shock,
whose input correspondence is

(%)

S

X(z){x: ZZS,SEQ}.

This specification has played an important role in some empirical studies of asset pricing (Jermann, 1998; Tal-
larini, 2000). The lack of substitutability manifested here between state-contingent outputs is characteristic

of all stochastic production function representations (Chambers and Quiggin 2000).
HTn essence, this production structure adds another financial asset, nonlinearly priced, to the asset struc-

ture. But unlike the other asset, this asset is subject to short selling restrictions since z; > 0.

13



and production operations given the present-value prices determined subjectively by their
equilibrium consumption patterns. Thus, the sole-proprietorship firm can be viewed as
though it operates with a separate finance division and a separate production division. It
controls practices in each not by providing individual production targets but by providing
a price signal in terms of q €P (w) NN (v). It is this basic observation, which provides

the fundamental rationale for this paper.

4 The Dual Representation of the Sole-Proprietorship
Firm Equilibrium

Define the present-value expenditure function, E . §Ri xR — R for the firm’s preference

structure by

E (q,u) =min{co+qc:u(co,c) >u}, q€ §Ri

cp,C

if there exists (co, ) such that u (co,c) > u and oo otherwise. The properties of E are

well-known: it is nondecreasing in u and nondecreasing and concave in q. Moreover, if
(co,c) € argmin{co + qc: u(co,€) > u},
then

c € 0qF (qu),
c = E(qu)—qizE (qu).
By Theorem 3, the properties of ¢* (w,q) and p(v,r), firm equilibrium for any com-

petitive firm facing prices (w,v) is characterized by (r,q,u) € R° x {P(w) NN (v)} x R

solving:

E(qu) = m,+c (w,q)+ qm,
r € O0qF (qu)— 0qc" (W,q) —m,

q € Op(v,r).

14



First a word about notation. Subdifferentials and superdifferentials are generally sets,
and these sets are singletons if and only if the relevant function is differentiable at the
point in question. For the expenditure function and for most reasonably smooth tech-
nologies,'? imposing differentiability does not seem particularly onerous or to involve any
true loss of generality. Thus, with little true loss of generality, these subdifferentials and
superdifferentials can be read as gradients. But this is not the case for p, which routinely
exhibits important subdifferentials (for example, N (v)), which are not singletons. Thus,

expressions of the form
r € 0gF (qu) — 0qc” (W,q) — m,

should formally be read as ‘r belongs to the set defined by subtracting each element of the
set Oqc” (W, q) from each element of the set 0 F (q,u) and translating the resulting set by

—m’. A more proper, but also more cumbersome, notation would be

r=x—z—-m, XE¢EOJ.FE(qu),z€ dqc" (W,q).

Keeping this notation in mind, the explanation is straightforward. The first condition
requires that the firm’s expenditure in present-value terms as a consumer equal its present
value income. The second S conditions require that the firm’s demand for y should equal
its period 1 supply. The last S conditions require that r be chosen so that the marginal
cost of raising each element of r is its present value.

By substitution of the S expressions into the last S, equilibrium requires that (q,u) €
{P(w)NN(v)} x R solve

E(qu) = mo+c (W.q)+9gm

q € arp (Vv aqE (qv Ll) - an* (W7 q) - m) . (1())

Given u, the firm’s equilibrium present-value price vector is determined as a fixed point of

the subdifferential of the arbitrage-cost function, as evaluated at the individual’s period

P2Notice, however, that the most familiar form of a stochastic technology, the stochastic production func-

tion, is always nondifferentiable at all economically efficient points (Chambers and Quiggin, 2000).
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1 excess demand. '* Standard fixed-point theorems familiar from the theory of general
equilibrium can be used to determine the existence and uniqueness of such solutions.

By (10), (q (v),u) represents a firm equilibrium only if
aqE ((_3_[ (V) 7u) - an* (W, (_3_[ (V)) —mnNM 7£ 0

Such an equilibrium is referred to as a separating firm equilibrium. In such equilibria,
the firm uses the pricing kernel to value its state 1 consumption and production decisions
even though neither they or y are necessarily perfectly replicable in financial markets.. A
separating firm equilibrium, therefore, satisfies the necessary and sufficient conditions for
‘local separation’ derived by Chambers and Quiggin (2003).

In a separating firm equilibrium, the market value of the firm, which is defined as
q(v)0qc™ (W,q) + Wiy (W,q),

corresponds to its present value, ¢* (w, q), because q = q(v). More generally, the market
value of the firm and its present value ¢* (w, q) are not equal. Using Hotelling’s Lemma,

the market value of the firm can be written as,

¢ (W,q) + (Q(V) = q) 94 (W.q),

which is the sum of the firm’s present value, ¢* (w,q), and what, following Magill and
Quinzii (1995), one might term the firm’s entrepreneurial risk, (q( v)—q)0qc” (W, q).
Because q (v) is the orthogonal projection of A (v) onto M, in equilibrium q (v) —q L M.
Hence, if 0q¢” (W, q) C M, the firm’s market value and its present value coincide. Thus, a

sufficient condition for the firm’s present value and market value to coincide is that

UgePw)rwvv) 19¢¢" (W, )} C M.

30One could represent equilibrium in terms of the firm’s indirect utility function defined as
V(q.e) =sup{u:E(qu) < e},

to eliminate the first equation in the equilibrium condition and then to use Roy’s identity in the second S
conditions. We have avoided this for two reasons: because V is only quasi-convex, it necessitates introducing
another derivative concept. And two, most of the restrictions on preferences used in financial and consumer
analysis are most clearly represented in terms of the expenditure function. Of course, identical results would

be obtained using this approach. Milne (1995) presents such a treatment in the context of complete markets.
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Chambers and Quiggin (2003) refer to this as efficient-set spanning to distinguish it from
the more usual notion of spanning of production opportunities which requires that feasible
state contingent outputs fall in M (Magill and Quinzii, 1995). Efficient-set spanning does

not imply that the firm prices its consumption activities using the pricing kernel.

4.1 Comparative statics for linear risk tolerant preferences

The equilibrium representation provides a simple platform from which to conduct comparative-
static analysis of the firm’s equilibrium choices. To illustrate, consider the class of linear
risk tolerant preferences. Linear risk tolerant (quasi-homothetic) ordinal preferences can
be characterized by expenditure functions of the Gorman polar form (Brennan and Kraus,

1976; Chambers and Quiggin, 2002):
E(qu)=E" (@) + E' (@), (11)
where E° and E! > 0 are expenditure functions. Denote
R(W,V) = Ugepnvm) {Y 1 Y € 9B (@)} .
We have:

Theorem 4 Assume that firm preferences are characterized by ( 11). If R(w,v) C M,
then firm equilibrium q s independent of mo. If m € M, and R(w,v) C M, then firm

equilibrium q is independent of (mo, m).
Proof By linear risk tolerance
0qE (q,u) = 04E° (q) + 9 E' (q) u,

with

_ me + C* (Wv q) + qm_EO (q)
E'(q) '

Thus,using Lemma 1 in the firm equilibrium conditions gives

U

q € 9p(v.04E" (q) + O4E" (a)u — Jqc” (W,q) — m)

= al'p (VvaqEO (q) - an* (Wv q) - m) ’
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if R(w,v) C M, and
a4 € 8p(v.9aE’ (a) + B (a)u — 9oc” (W,q) — m)
= al'p (VvaqEO (q) - an* (Wv q)) ’
ifmeM, and R(w,v)C M.

Preferences exhibiting linear risk tolerance generate state-contingent demands that are
linear in real income, u. The condition R (w,v) C M requires that the Hicksian real-income
effect always lie in the market span. Changes in real wealth, therefore, only create risk that
can be priced in the market. Hence, the firm’s equilibrium present values are independent
of things that only shift u. When m € M, the period 1 endowment also plays no role in
determining equilibrium q for the same intuitive reason. The endowment then carries no
idiosyncratic risk, and therefore, it too can be priced accurately in the market.

Alternatively, one might think in terms of two-fund portfolio separation theory. Under
linear risk tolerance, excess state-contingent demands consist of a component, 9qE° (q) —
dqc* (W, q), which is independent of real income, and a component, udqE" (q), which is
linear in real income. If the latter is in M, it can be priced accurately there by the principle
of perfect replicability. That leaves only the first component to play a role in determining
the firm’s present-value prices.

Requiring that R (w,v) C M is a strong restriction. It considerably narrows the classes
of preferences within the general linear risk tolerant class. But many such preferences are
routinely used in both the finance and consumer demand literatures. One such important
class of preferences are the preferences translation homothetic in a direction spanned by
the market. More precisely, Chambers and Fire (1998) have shown that preferences are
translation homothetic in the direction of g if and only if they exhibit linear risk tolerance

and

E'(q)=qg.

Intuitively, translation homothetic preferences are the linear risk tolerant preferences for

which the real income effect is independent of prices. * We have:

14Blackorby, Boyce, and Russell (1978) refer to translation homotheticity as homotheticity to minus infin-

ity. Dickinson (1980) refers to it as a linear parallel preference structure.
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Corollary 5 If preferences are translation homothetic in the direction g € M, then equi-
librium q s independent of mo. If m € M and preferences are translation homothetic in

the direction of g € M, then equilibrium q is independent of (mo, m).

The most familiar member of the translation homothetic class in the finance literature
is the constant absolute risk averse (CARA) preference structure. In the standard portfolio
problem with expected-utility preferences, CARA ensures that the optimal holdings of the
risky asset are independent of the individual’s wealth. Our next corollary generalizes that

basic result to the case of producing firms with non-expected utility preferences:

Corollary 6 If the firm’s preferences are CARA and 1 € M, then equilibrium q is inde-
pendent of mg. If preferences are constant absolute risk averse, 1 € M, and m € M, then

equilibrium q is independent of (mo, m).

Proof CARA preferences are characterized by E'(q) = gl (Chambers and Quiggin,
2002).1

For CARA preferences, excess demands also consist of two parts. The first, 9, E° (q) —
0qC” (W, q), which is independent of real income can be interpreted as the demand for the
risky portfolio, while the second, u1, is the demand for the traditionally riskless asset. If
the riskless asset is in M, as it is in the standard portfolio problem, only the demand for
the risky portfolio affects the determination of equilibrium q.

Constant relative risk averse (CRRA) preferences are the subclass of linear risk tolerant

prefrences given by E° = 0.(Chambers and Quiggin, 2002). We conclude:

Corollary 7 If preferences are constant relative risk averse and R (w,v) C M, then equi-

librium q s determined by the technology and the period-1 endowment.

Proof If preferences are constant relative risk averse, E° = 0, thus under the conditions

of the corollary.

q€d.p(v,— 04 (W,q)—m) 1N
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Constant absolute risk aversion and constant relative risk aversion are both special
cases of linear risk tolerance. Safra and Segal (1998) and Quiggin and Chambers (1998)
have studied the further special class of preferences that exhibit both constant absolute
risk aversion and constant relative risk aversion. Safra and Segal (1998) name this class
of preferences constant risk averse. Particularly important members of this subclass of
preferences include the risk-neutral preferences, Yaari’s dual linear preference model, lin-
ear mean-standard deviation preferences, completely risk averse or maxmin preferences
(u (co,c) = u(co,min{cy,...,cs})), and the maximin expected value preference structure
that is a special case of Gilboa and Schmeidler’s (1989) ambiguity-averse maximin ex-
pected utility class. Yaari has shown dual linear preferences lead to plunging behavior in
the simple portfolio selection problem. Chambers and Quiggin (2002) have shown that
plunging behavior is characteristic of the entire constant risk averse class of preferences
when confronted with a convex choice problem. In the current context, we have that this
type of plunging behavior on the firm’s demand side leads to the firm determining its
present value prices by the optimal adjustment of its production portfolio to its period 1

endowment.

Corollary 8 If preferences are constant risk averse and 1 € M, then equilibrium q is

determined by the technology and the period-1 endowment.

Proof If preferences are constant risk averse, then (Chambers and Quiggin 2002)

uql q€EP”
E(qu) = S
—o00 otherwise

where P~ is a closed convex set. Thus, if OF ( q,u) exists, it involves only riskless

consumption.ll

Chambers, Fare, and Quiggin (2003) have recently studied the class of preferences
which are simultateously translation homothetic in the direction of g and exhibit constant
relative risk aversion. These preferences include, among others, the class of preferences

which are Leontief around g (u (¢o, ¢) = 4 (co, min{gic, ..., gscs})). We have:
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Corollary 9 If preferences are translation homothetic in the direction of g €M and exhibit

CRRA, then equilibrium q s determined by the technology and the period-1 endowment..

Proof If preferences are translation homothetic in the direction of g and exhibit constant
risk aversion, they are g— generalized constant risk averse in the sense of Chambers,

Fire, and Quiggin (2003), whence

uqg q eP
E(qu) = S
—o00 otherwise

where P is a closed convex set.l

Theorem 4 and its corollaries encompass both familiar results as well as what appear
to be entirely new results. To this point, no structural assumption has been made on
preferences other than linear risk tolerance. Thus, these results established extend beyond
the expected utility preference class. These results apply for general technologies. Plac-
ing functional restrictions on the technology potentially yields further comparative-static

results.

4.2 Changes in the technology and input prices

Perhaps the most salient characteristic of the sole-proprietorship literature is its relative
paucity of comparative static results. A similar paucity is apparent in the literature on
financial markets. But there, the tight focus on asset pricing makes it more understandable.
However, in the sole-proprietorship literature, even a complete focus on asset pricing does
not justify ignoring comparative static effects.

Two examples illustrate. Changes in current period input prices evoke changes in the
firm’s equilibrium behavior that are manifested dually in changes in equilibrium q and
primally in its consumption and production choices. These changes in q evoke changes in
asset valuation.

Similarly, exogenous changes in the firm’s operating environment, be it in the form

of technical advances or changes in the tax code, alter the firm’s valuation and resource
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allocation behavior. Thus, any asset-pricing theory, to be complete, must be able to
capture and evaluate these comparative-static effects.

We address these issues by providing benchmark cases for which the presence of an
asset market washes out such effects by enabling the firm to use that market to accurately
price the exogenous changes. For concreteness, we speak in terms of factor prices and
technical change, but the basic results and approach are more general. We do not aim for
a complete taxonomy. Instead, the aim is to illustrate the general approach. Therefore,
a specific technology is used. Extending these methods to more general technologies is
straightforward.

Consider present-value profit functions of the form

c (Wv C_[,t) =a (q) +b (Wv C_[,t) ’ (12>

where t now indexes the state of the technology. Define

RX (Wv V) = UqEP(w)ﬁ/\/(v) {y 'y € aqb (Wv C_[,t)} .

We have:

Theorem 10 Suppose that the firm’s technology is characterized by (12) and its prefer-
ences by (11). If R* (w,v) C M and R(w,v) C M, then equilibrium q is independent of
(mo,w,t). IfR* (w,v) C M, R(w,v) C M, and m € M,then equilibrium q is independent

of (mo, m, w,t).

Theorem 10 has corollaries paralleling exactly those derived for Theorem 4. Each of
these appear to be new. However, because they follow from a straightforward rewriting of
earlier results, we leave their exact statement, proof, and intuitive motivation to the inter-
ested reader. A number of further comparative-static results are available by considering

particular profit structures that satisfy R~ (w,v) C M. That, too, is left to the reader.
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5 Dual Market Equilibrium

Borrowing the terminology of Magill and Quinzii (1995), we define (w,v,qy,,,,dx, U1, ..., Ux) €

RY X RT x {Pe (W) NN (V)}T x RE to be a dual entrepreneurial equilibrium if it solves'

Ek? (quuk:) = m0k+02 (quk)+ql€m/€7 kzlv-'vK

dr € Oep (v, 04k (drur) — 9qcj, (W, qy,) — my),

k= 1,..K
K
ZaWCZ(quk) = _)_(7
k—1
K
> 0up (V. 0y B (kstir) — Ogciy (W, @) — ) = O, (13)
k—1

where X is the current period endowment of inputs. The first K (5 + 1) expressions repeat
the dual-firm equilibrium conditions. The next N conditions, via Hotelling’s lemma (7),
require that the economy-wide input demand equal its supply. The last J equations, via
Shephard’s lemma (8), require that financial portfolios balance one another.

Comparative static analysis is straightforward. For example,

Theorem 11 Let firms have preferences translation homothetic in the direction g € M
(k=1,...,K). In dual entrepreneurial equiltbrium (w,v,dqy,,,,dx) 1S independent of (mo)
k=1,..K. Ifmy C M for all k, then in dual entrepreneurial equilibrium (w,v,q,,,,,qx)

is independent of (mog, my) k=1, ..., K.
Proof Under the conditions of the theorem, (w,v,q;,,,,dx) are determined by

ar € 0p(v,0,E (a) — 8qci (W, q;,) — my)
k= 1,..,K

K
ZaWCZ(quk) = _)_(7
k=1

K
Z avp (Vv aqu?: (qk:) - 3q02 (Wv qk:)) = 0N
k=1

5Here, for the sake of simplicity, we have assumed that each firm owns and operates its own technology.
By introducing a slightly more complex notation that distinguishes between owners of firms and non-owners,

we could make the model correspond exactly to the primal model formulated in, for example, Milne (1995).
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Theorem 11 is a general statement that encompasses a number of well-known results on
both financial-market and sole-proprietorship equlibria as special cases (for example, see
Magill and Quinzii (1995)) as well as some apparently new results. It is straightforward
to derive corollaries that parallel the corollaries associated with Theorem 4. We leave the
derivation and intuitive motivation of these results to the reader. The arguments parallel
earlier ones.

Comparative-static results for t are also straightforward:

Theorem 12 Assume that firms have preferences translation homothetic in the direction

g. €M (k=1,..,K) and that their technologies satisfy

with by (t) C M for all k, then in dual entrepreneurial equilibrium (w,v,qq,,,,.qx) s

independent of t.

It is well-known (Milne, 1995; Magill and Quinzii, 1995; LeRoy and Werner, 2000) that
placing enough structure on linear risk tolerant preferences to satisfy Gorman’s (1953)
conditions for the existence of an aggregate indifference curve can produce instances where
equilibrium in incomplete markets is Pareto optimal because of identical income effects
across agents. Such results can apply here as well. Because they represent a rewriting of
well-known results in dual terms, we leave their exact statement to the interested reader.
Instead, we now turn our attention to alternative conditions consistent with a Paretian
equilibrium in the presence of incomplete markets.

Define (w,v,q(v),us1,...,ux) to be a separating dual entrepreneurial equilibrium if
(g (v),ux) is a dual firm equilibrium for each k, and the N material balance and J financial
balance conditions in (13) are satisfied. Pareto optimality is straightforward since Theorem

3 implies that q (v) € 0,Cy (W, Vv,y,) in such an equilibrium. We have:

Theorem 13 There exists a separating dual entreprenuerial equilibrium at (w,v,q (v),u1, ..
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if and only if

E.(@Q()ue) = Mo+ ¢, (W,q(v)) + (V) my
aqu? ((_J.I(V)vuk?)_aqc}g (Wv(_:.I(V))_mk € M, k=1,K,

> 0wt (w.a(v)) = -X,
k=1

> 0p(v,04E, @ (v) ur) — 965, (W, G (v)) —my) = O.

k=1

Theorem 13 requires that the firm’s excess demands for state-contingent incomes lie
in M. It does not require any of the following: the firm’s net consumption choices,
0 qEk (q (V) ,ur) — my, lie in M; its feasible production sets are spanned by M; or that its
optimal production choices fall in M. Rather, each firm’s production activities allow the
firms to extend pricing via the pricing kernel to encompass assets, 0qEx (q (V) ,ux) — my
and Oqcj, (W, q (v)) that are not perfectly replicable. Thus, it generalizes the effectively
complete market conditions for Pareto optimality developed, for example, by LeRoy and
Werner (2000) and others.

Chambers and Quiggin (2003) show that the ability of the firm’s technology to ex-
tend the pricing kernel in this fashion to nonreplicable assets depends critically upon the
flexibility of the firm’s production technology. In particular, they show that the stochas-
tic production function representation, which is the cornerstone of much analysis of the
risk-averse firm, is unlikely to permit this extension without severe restrictions upon firm

preferences.

5.1 Measuring market-level idiosyncratic risk

One characteristic of a separating dual entrepreneurial equilibrium is that state-contingent
production plans maximize economy-wide market value. In symbolic terms,

K K K
max{q(v)z:zk—wz:xk:xkEXk(zk),kzl,...,K} = Zmax{q(v)zk—ka:xkEX;
k=1 k=1

k=1

= ) G (w,q(v)).
k=1
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Thus, the market is allocatively efficient. Given (q(v),w), there is no possible reallocation
of production activities across firms that will increase the economy-wide market value.

If financial markets are not complete, equilibrium is not generally Pareto optimal. In
equilibrium, because of the presence of idiosyncratic risk, each firm may have a different
present-value vector and, thus, discounts random income streams differently. If markets
were complete, these different valuations would be resolved by trading state claims.

Our analysis suggests that an appropriate measure of the cost of the residual idio-
syncratic risk is the difference between the actual market value of the firms’ production
activities and the maximal possible economy-wide value at equilibrium q (v) . Symboli-

cally, the cost of idiosyncratic risk (IR) is measured by

Fﬁﬂw

IR = —(q(v Za c. (W, qy) +WZ@WC,€ W, d;)
k=1 = k=1
K K K
= ZC Zciqu +Z (ar — @ (v)) Oqcy, (W, qy) -
k=1 k=1 k=1

Several observations. First, by the definition of ¢*, IR > 0. Second, each firm’s
contribution to IR decomposes into two components. The first, ¢ (w,q (v)) — ¢ (W, qy),
is a distribution effect, and the second, (qr — q (v)) dqc;; (W, q,,), its entrepreneurial risk.
The distribution effect, which measures the difference between the firm’s optimal market
value and its internal present value, can be either positive or negative for an individual
firm as can the entrepreneurial risk. The fact that some firms may have ‘too much’ present
value income and others may have ‘too little’ is a basic characteristic of Pareto inferior
equilibria.

Efficient-set spanning, for example, is sufficient to ensure that the entrepreneurial risk
is zero. Notice, however, that even if the entrepreneurial risk is zero for all firms, IR
can be strictly positive because of the presence of nonzero distribution effects. Thus,
spanning conditions of the type formulated, for example, by Milne (1995) and Magill and
Quinzii (1995) are not sufficient to ensure Pareto optimality. The separation conditions of
Chambers and Quiggin (2003), which are manifested in the definition of a dual separating
entrepreneurial equilibrium, do.

A distinctive feature of this measure of idiosyncratic risk is that it does not require either
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the existence of an objective probability measure or a common subjective probability (ra-
tional expectations) to parse the idiosyncratic risk. This is important analytically because
when markets are incomplete, entrepreneurs may choose to bear idiosyncratic risk in pro-
duction precisely because of differences in probability judgments even when ¢ (v) € P, (w)
for all k. By contrast, the most commonly used approach to idiosyncratic risk measurement
rules such occurences out by assumption when it partitions idiosyncratic risk via variances
and covariances predicated upon a common probability measure (see, for example, Magill

and Quinzii (1995)).

6 Concluding comments

The fact of stochastic production was a primary motivation for the development of many
financial markets. Yet, despite important contributions such as those of Milne (1976, 1995),
Cochrane (1991, 1996), Magill and Quinzii (1995), Jermann (1998), Tallarini (2000), and
real-business cycle models, asset pricing and resource allocation decisions have typically
been analyzed separately. And when they were analyzed jointly, it was typically in either
purely primal terms or in terms of induced preferences and technologies. Dual methods
permit the application of a wide range of powerful analytical tools to the benchmark sole-
proprietorship model. In particular, a dual representation of the theory of asset pricing
illuminates the firm’s resource allocation decisions while linking them clearly and intuitively
to its activities in financial markets.

There are a number of directions in which the analysis might be extended. Perhaps the
most important is further comparative-static analysis for asset pricing theory, both at the
firm and the economy level. The simple example of technological change considered here
illustrates some of the possibilities. However, other possibilities including the effect of tax
policy appear to flow from a natural extension of these results.

We emphasize, however, that the scope of this paper is limited to the two-period sole
proprietorship economy. Particularly in instances where the Fisher separation theorem is
known to fail, the derivative-cost function, or its logical extensions may have a relatively

small role to play in analyzing the resource allocation and asset pricing decisions of firms.
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One might think that it would be similarly difficult to extend the analysis to incorporate
the existence of frictions in financial markets within the two-period framework. However,
if these frictions can be reasonably treated as convex, as in Prisman (1986) and Ross
(1987), a straightforward modification of the basic modelling procedure applies. Similarly,
much of the analysis presented here may be applied to the analysis of partnerships and

corporations.
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