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The belief that the essence of the Black Scholes model is correct implies that one is unaware that a 
delta-hedged portfolio is risky, while believing that the proposition, a delta-hedged portfolio is risk-free, is true. 
Such partial awareness is equivalent to restricted awareness in which one is unaware of the states in which 
a delta-hedged portfolio is risky. In the continuous limit, two types of restricted awareness are 
distinguished. 1) Strongly restricted awareness in which one is unaware of the type of the true stochastic 
process. 2) Weakly restricted awareness, in which one is aware of the type of the true stochastic process, 
but is unaware of the true parameter values.  We apply the generalized principle of no-arbitrage 
(analogy making) to derive alternatives to the Black Scholes model in each case. If the Black Scholes 
model represents strongly restricted awareness, then the alternative formula is a generalization of 
Merton’s jump diffusion formula. If the Black Scholes formula represents weakly restricted awareness, 
then the alternative formula, first derived in Siddiqi(2013), is a generalization of the Black Scholes 
formula. Both alternatives generate implied volatility skew. Hence, the sudden appearance of the 
skew after the crash of 1987 can be understood as the consequence of growing awareness, as 
investors realized that a delta-hedged portfolio is risky after suffering huge losses in their portfolio-
insurance delta-hedges. The different implications of strongly restricted awareness vs. weakly restricted 
awareness for option pricing are discussed. 

JEL Classifications:  G13; G12 

Keywords:  Partial Awareness; Restricted Awareness; Black Scholes Model; Analogy Making; 
Generalized Principle of No-Arbitrage; Implied Volatility Skew; Implied Volatility Smile; Portfolio 
Insurance Delta-Hedge  
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The Financial Market Consequences of Growing Awareness: The Case of 
Implied Volatility Skew 

 

On Monday October 19 1987, stock markets in the US (on Tuesday October 20 , in a variety of 

other markets worldwide), along with the corresponding futures and options markets, crashed; with 

the S&P 500 index falling more than 20%. To date, in percentage terms, this is the largest ever one-

day drop in the value of the index. The crash of 1987 is considered one of the most significant 

events in the history of financial markets due to the severity and swiftness of market declines 

worldwide. In the aftermath of the crash, a permanent change in options market occurred; implied 

volatility skew started appearing in options markets worldwide. Before the crash, implied volatility 

when plotted against strike/spot is almost a straight line, consistent with the Black Scholes model, 

see Rubinstein (1994). After the crash, for index options, implied volatility starts falling 

monotonically as strike/spot rises. That is, the implied volatility skew appeared.  What caused this 

sudden and permanent appearance of the skew? As noted in Jackwerth (2000), it is difficult to 

attribute this change in behavior of option prices entirely to the knowledge that highly liquid 

financial markets can crash spectacularly. Such an attribution requires that investors expect a repeat 

of the 1987 crash at least once every four years, even when a repeat once every eight years seems too 

pessimistic. Perhaps, the crash not only imparted knowledge that risks are greater than previously 

thought, it also caused a change in the mental processes that investors use to value options. 

Before the crash, a popular market practice was to engage in a strategy known as “portfolio 

insurance”.1 The strategy involved creating a “synthetic put” to protect equity portfolios by creating 

a floor below which the value must not fall.  However, the creation of a “synthetic put” requires a 

key assumption dating back to the celebrated derivation of the Black Scholes option pricing formula 

(Black and Scholes (1973) and Merton (1973)). The key assumption is that an option’s payoff can be 

replicated by a portfolio consisting only of the underlying and a risk free asset and all one needs to 

                                                           
1 According to Mackenzie (2004), an incomplete list of key players implementing portfolio insurance strategies for large 
institutional investors during the period leading to the crash of 1987 includes: Leland O’Brien Rubinstein Associates, 
Aetna Life and Casualty, Putnam Adversary Co., Chase Investors Mgmt., JP Morgan Investment Mgmt., Wells Fargo 
Investment Advisors, and Bankers Trust Co.  See Mackenzie (2004) for details.  
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do is shuffle money between the two assets in a specified way as the price of the underlying changes. 

This assumption known as “dynamic replication” is equivalent to saying that “a delta-hedged 

portfolio is risk-free”. The idea of “dynamic replication” or equivalently the idea that “a delta 

hedged portfolio is risk-free” was converted into a product popularly known as “portfolio 

insurance”, by Leland O’Brien Rubinstein Associates in the early 1980s. The product was replicated 

in various forms by many other players. “Portfolio insurance” was so popular by the time of the 

crash, that the Brady Commission report (1988) lists it as one of the factors causing the crash. For 

further details regarding portfolio insurance and its popularity before the crash, see Mackenzie 

(2004). 

In this article, we argue that before the crash, investors were unaware of the proposition that 

“a delta-hedged portfolio is risky”. That is, they implicitly believed in the proposition that “a delta-

hedged portfolio is risk-free”. The crash caused “portfolio insurance delta-hedges” to fail 

spectacularly. The resulting visceral shock drove home the lesson that “a delta-hedged portfolio is 

risky”, thus, increasing investor awareness.  

Before the crash, the belief that a delta-hedged portfolio is risk-free led to options being 

priced based on no-arbitrage considerations.  Principle of no arbitrage says that assets with identical 

state-wise payoffs should have the same price, or equivalently, assets with identical state-wise payoffs should have 

identical state-wise returns. So, a delta-hedged portfolio, if it has the same state-wise payoffs as a risk-

free asset, should offer the same state-wise returns as the risk-free asset. What if a delta-hedged 

portfolio does not have state-wise payoffs that are identical to a risk-free asset or any other asset for 

the matter? Experimental evidence suggests that when people cannot apply the principle of no-

arbitrage to value options because they cannot find another asset with identical state-wise payoffs, 

they rely on a weaker version of the principle, which can be termed the generalized principle of no-

arbitrage or analogy making. See Siddiqi (2012) and Siddiqi (2011).  The generalized principle of no-

arbitrage or analogy making says, assets with similar state-wise payoffs should have the same state-wise returns on 

average, or equivalently, assets with similar state-wise payoffs should have the same expected return.  The 

cognitive foundations of this experimentally observed rule are provided by the notion of mental 

accounting (Thaler (1980), Thaler (1999), and discussion in Rockenbach (2004)), and categorization 

theories of cognitive science (Henderson and Peterson (1992)). See Siddiqi (2013) for details. The 

prices determined by the generalized principle of no-arbitrage are arbitrage-free if an equivalent 

martingale measure exists. Existence of a risk neutral measure or an equivalent martingale measure is 
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both necessary and sufficient for prices to be arbitrage-free. See Harrison and Kreps (1979). We 

show that the model developed in this article, permits an equivalent martingale measure, hence 

prices are arbitrage-free. 

A call option is widely believed to be a surrogate for the underlying stock as it pays more 

when the stock pays more and it pays less when the stock pays less.2  We follow Siddiqi (2013) in 

taking the similarity between a call option and its underlying as given and apply the generalized 

principle of no-arbitrage or analogy making to value options.  

 Li (2008) uses the term partial awareness to describe a situation in which one is unaware of a 

proposition but not of its negation, which is implicitly assumed to be true. So, in Li (2008)’s 

terminology, investors had partial awareness before the crash as they were unaware of the proposition 

“a delta-hedged portfolio is risky”. They implicitly assumed that the proposition “a delta-hedged 

portfolio is riskless” is true. Even though, it seems natural to characterize states of nature in terms of 

propositions, it is often useful to refer to the state space directly. Quiggin (2013) points out that 

there is a mapping between the characterizations in terms of propositions (syntactic representation 

of unawareness) to the more usual semantic interpretation in which one describes the state space 

directly. In our case, the semantic interpretation is that, before the crash, investors were unaware of 

the states in which the delta-hedged portfolio is risky. Such a semantic concept of unawareness is 

called restricted awareness. Grant and Quiggin (2013), and Halpern and Rego (2008) extend the notion 

of restricted awareness to include sub-game perfect and sequential eqilibria in interactive settings. 

Quiggin (?)(note to self: ask for reference) proposes an extension of the notion of 

unawareness to stochastic processes and defines restricted awareness as a situation in which one is 

unaware of at least one state in the discrete stochastic process. For example, let’s say the true process 

is trinomial; however, one is only aware of two states. A person with such restricted awareness may 

create a delta-hedged portfolio which would be risk-free in the two states he is aware of, but if the 

third state, which he is unaware of, is realized, the portfolio will lose value. That is, he would falsely 

                                                           
2 As illustrative examples of professional traders considering a call option to be a surrogate of the underlying, see 
the following posts:  
http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772, 
http://www.investingblog.org/archives/194/deep-in-the-money-options/, 
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp, 
http://daytrading.about.com/od/stocks/a/OptionsInvest.htm 
 

http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772
http://www.investingblog.org/archives/194/deep-in-the-money-options/
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp
http://daytrading.about.com/od/stocks/a/OptionsInvest.htm
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believe that the delta-hedged portfolio is risk-free, whereas in reality, the delta-hedged portfolio is 

risky. Note, if the third state occurs with a small enough frequency, then one can stay oblivious of it 

for a considerable time period. 

The notion of restricted awareness when applied to stochastic processes needs a finer 

classification in the continuous limit. In the continuous limit, two broad possibilities arise: 1) Strongly 

restricted awareness: One is unaware of the type of the true stochastic process. As one example, 

suppose the true process is jump-diffusion and one incorrectly thinks that it is ordinary diffusion. 2) 

Weakly restricted awareness: One is aware of the type of the true stochastic process; however, one is 

unaware of the true parameter values.  

 Throughout this article, we assume that if one is unaware, then he is unaware that he is 

unaware. From this point forward, we suppress explicitly mentioning this assumption, for clarity. 

Section 2 sets up the basic model in discrete time to bring out the economic intuition of partial or 

restricted awareness in the context of option pricing. In the continuous limit, if the Black Scholes model 

represents strongly restricted awareness, then the corresponding analogy based formula (assuming full-

awareness) is derived in section 2. The formula can be considered a generalization of Merton’s jump 

diffusion formula (see Merton (1976)). If the Black Scholes model represents weakly restricted 

awareness, then the corresponding analogy based formula (assuming full-awareness) is derived in 

section 3. That formula, first derived in Siddiqi (2013), can be considered a generalization of the 

Black Scholes model. The implied volatility skew is generated in both cases; hence, the sudden 

appearance of the skew after the crash of 1987 can be understood as the consequence of growing 

awareness induced by the crash. Section 4 compares strongly restricted awareness with weakly restricted 

awareness and shows that the implied volatility skew as well as the implied volatility smile is generated 

in the first case, whereas, in the second case, only the skew is explained. Hence, it is argued, that for 

options on individual stocks, assuming strongly restricted awareness is better, whereas for index options, 

the weaker form seems like a natural choice. Section 5 concludes with suggestions for future research. 
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2. A Discrete-Time Model of Growing Awareness 

In this section, we explore the implications of growing awareness in discrete time. This brings out 

the economic intuition and clarifies the valuation of options by providing a comparison of analogy 

making and no-arbitrage pricing. The basic set-up of the model is the same as in Amin (1993), which 

is a generalization of Cox, Ross, and Rubinstein (1979) binomial model (CRR model). 

 Assume that trade occurs only on discrete dates indexed by 0, 1, 2, 3, 4, ………T. Initially, 

there are only two assets. One is a riskless bond that pays �̇� every period meaning that if B dollars 

are invested at time i, the payoff at time i+1 is �̇�𝐵. The second asset is a risky stock. As in Amin 

(1993), we assume that the stock price at date i can only take values from an exogenously specified 

set given by 𝑆𝑗(𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ {−∞, … ,−3,−2,−1,0,1,2,3, … . . ,∞}. The variable j is an index for 

state and the variable i is an index for time. In this set-up, the state-space for a two-period model is 

shown in figure 1. The transition probabilities in this state-space are represented by Q. 

 In each time period, the stock price can undergo either of the two mutually exclusive 

changes. Most of the time, the price changes correspond to a state change of one unit. That is, if at 

time i, the state is 𝑆𝑗(𝑖), then at time i+1, it changes either to 𝑆𝑗+1(𝑖 + 1) or 𝑆𝑗−1(𝑖 + 1). Such 

changes, termed local price changes, correspond to the binomial changes assumed in CRR model. On 

rare occasions, the state changes by more than one unit. Such non-local changes are referred to as 

jumps. We assume that, in case of a jump, the stock price can jump to any of the non-adjacent states. 

So the structure of the state-space is that of jumps super-imposed on the binomial model of CRR. 

For simplicity, we assume that there are no dividends. 

 Assume that a new asset, 𝐶𝑗(𝑖), which is a call option on the stock, is introduced, with 

maturity at 𝜏. Without loss of generality, assume that j=0. Consider the following portfolio:  

𝑉(𝑖) = 𝑆0(𝑖)𝑥 − 𝐶0(𝑖)                                                                                                                              (1) 

Where 𝑥 = 𝐶+1(𝑖+1)−𝐶−1(𝑖+1)
𝑆+1(𝑖+1)−𝑆−1(𝑖+1)
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Time 0 Time 1 Time 2 
 ………….. ………….. 
 ............. ............. 
 𝑆+4(1) 𝑆+4(2) 
 𝑆+3(1) 𝑆+3(2) 
 𝑆+2(1) 𝑆+2(2) 
 𝑆+1(1) 𝑆+1(2) 
𝑆0(0) 𝑆0(1) 𝑆0(2) 

 𝑆−1(1) 𝑆−1(2) 
 𝑆−2(1) 𝑆−2(2) 
 𝑆−3(1) 𝑆−3(2) 
 𝑆−4(1) 𝑆−4(2) 
 ………….. ………….. 
 ………….. ………….. 

(The state space for stock price dynamics over two periods) 

Figure 1 

The portfolio in (1) is called the delta-hedged portfolio because such a portfolio gives the same value 

if either of the adjacent states is realized in the next period. That is, conditional on local price changes 

in the underlying stock, the portfolio is risk-free. In what follows, for ease of reading, we suppress 

the subscripts and/or time index, wherever doing so is unambiguous.  

If only local price changes happen, then, in the next period: 

𝑉+1 = 𝑉𝑙(𝑖 + 1) = 𝑆+1(𝑖 + 1)𝑥 − 𝐶+1(𝑖 + 1)                                                                                      (2) 

Or  

𝑉−1 = 𝑉𝑙(𝑖 + 1) = 𝑆−1(𝑖 + 1)𝑥 − 𝐶−1(𝑖 + 1)                                                                                      (3) 

Define the single period capital gain return on the underlying stock as follows: 

∆𝑘= 𝑆+𝑘(𝑖+1)
𝑆(𝑖)

 where k=……,-2, -1 ,0, 1, 2,…….. 
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Substituting the value of 𝑥 in either (2) or (3) leads to: 

𝑉±(𝑖 + 1) =
𝐶+1(𝑖 + 1)∆−1 − 𝐶−1(𝑖 + 1)∆+1

∆+1 − ∆−1
                                                                                      (4) 

If only local price changes are allowed, then the portfolio in (1) takes the value shown in (4) in the 

next period. That is, the delta-hedged portfolio is locally risk free; however, it is not globally risk free as 

jumps can also happen. 

 Now, we can specify the dynamics of awareness. Initially, assume that investors are only 

aware of local price changes. That is, they are only aware of a binomial sub-lattice in the whole state 

space. In syntactic representation, they are unaware of the proposition, “the delta-hedged portfolio 

in (1) is risky”. So, they believe that the proposition “the delta-hedged portfolio is risk-free” is true. 

In semantic representation, if the current state is j, they are unaware of the following states (and 

states that can only be reached from these states): 

 𝑆𝑗+𝑓(𝑖 + 1) 𝑤𝑖𝑡ℎ 𝑓 ≠ ±1. 

What are the implications of this belief for the price dynamics of the call option? If the delta-

hedged portfolio is believed to be risk-free then according to the principle of no-arbitrage (assets 

with identical state-wise payoffs should have identical state-wise returns), it should offer the same 

return as the risk free bond. That is, 

𝑉±(𝑖 + 1) = �̇�𝑉(𝑖)                                                                                                                                      (5) 

Substituting (1) and (5) in (4) and simplifying leads to: 

�̇� �
𝐶+1(𝑖 + 1) − 𝐶−1(𝑖 + 1)

∆+1 − ∆−1
� − �

𝐶+1(𝑖 + 1)∆−1 − 𝐶−1(𝑖 + 1)∆+1
∆+1 − ∆−1

� = �̇�𝐶(𝑖)                               (6) 

Starting from time 𝑖 = 𝜏, recursive application of (6) leads to the current price of the call option. 
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Re-arranging (6): 

�
�̇� − ∆−1
∆+1 − ∆−1

�𝐶+1(𝑖 + 1) + �
∆+1 − �̇�
∆+1 − ∆−1

�𝐶−1(𝑖 + 1) = �̇�𝐶(𝑖)                                                        (7) 

In (7), the terms in brackets in front of 𝐶+1(𝑖 + 1) and 𝐶−1(𝑖 + 1) are the risk neutral probabilities.  

 As local price changes and jumps are assumed to be mutually exclusive3, the two are 

distinguished ex-post.  We assume that once a jump is observed, investors become aware of the full 

state space. That is, they become aware that apart from local price changes, jumps can also happen. 

The awareness of full state space implies that investors are no longer unaware of the proposition, 

“the delta-hedged portfolio is risky”. The delta-hedged portfolio can no longer be considered risk 

free by fully aware investors. 

 Consider the value of the delta-hedged portfolio in case of a jump. Define Y as the one 

period capital gain return on the stock, in case of a jump. That is, in case of a jump, the next period 

stock price is 𝑆(𝑖)𝑌. The corresponding state induced by the jump is denoted by y. Hence, the value 

of the delta-hedged portfolio conditional on the jump is: 

𝑉(𝑖 + 1)| 𝑗𝑢𝑚𝑝 = 𝑉𝑦(𝑖 + 1) = 𝑆(𝑖)𝑌𝑥 − 𝐶𝑦(𝑖 + 1)                                                                         (8) 

The delta-hedged portfolio is no longer risk free. In the case of local price changes, its value is risk 

free and is given by (4), and in the case of a jump, its value is risky and is given by (8). Assume that 

the true probability (under Q) of there being a jump is 𝛾. Define the expectations operator with 

respect to the distribution of Y as 𝐸𝑌. The expected value of the delta-hedged portfolio can now be 

written as: 

𝐸[𝑉(𝑖 + 1)] = 𝛾𝐸𝑌�𝑉𝑦(𝑖 + 1)� + (1 − 𝛾)𝑉±(𝑖 + 1)                                                                          (9) 

As the delta-hedged portfolio can no longer be considered identical to the risk-free asset, the 

principle of no-arbitrage cannot be applied to determine a unique price for the call option. A call 

option is similar to the underlying stock, so in accordance with the principle of analogy 

making/generalized principle of no-arbitrage, it should offer the same expected return as the  

                                                           
3 Whether local changes and jumps are mutually exclusive or not does not matter in the continuous limit. 
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underlying. It follows that the delta-hedged portfolio should also offer the same expected return as 

the underlying stock. Proposition 1 shows the recursive pricing equation that the call option must 

satisfy under analogy making. 

 

Proposition 1 If analogy making determines the price of the call option, then the following 

recursive pricing equation must be satisfied: 

(𝟏 − 𝜸)�𝑪+𝟏(𝒊+ 𝟏) �

(𝒓 + 𝜹 − 𝜸𝑬𝒀[𝒀])
𝟏 − 𝜸 − ∆−𝟏
∆+𝟏 − ∆−𝟏

� + 𝑪−𝟏(𝒊+ 𝟏) �
∆+𝟏 −

(𝒓 + 𝜹 − 𝜸𝑬𝒀[𝒀])
𝟏 − 𝜸

∆+𝟏 − ∆−𝟏
��

+ 𝜸𝑬𝒀�𝑪𝒚(𝒊 + 𝟏)� = (𝒓 + 𝜹)𝑪(𝒊)                                                                       (𝟏𝟎) 

Where 𝜹 is the risk premium on the underlying stock. 

Proof. 

Analogy making implies that (𝑟 + 𝛿)𝑉(𝑖) = 𝐸[𝑉(𝑖 + 1)]. Substituting (4) and (8) in (9) and 

collecting terms together leads to (10). 

∎ 

(10) differs from the corresponding recursive pricing equation in Amin (1993) due to the presence 

of 𝛿, which is the risk premium on the underlying stock. If the delta-hedged portfolio in (1) is 

considered identical to a riskless asset, which corresponds to unawareness of a part of the state 

space, then according to the principle of no-arbitrage, it should offer the risk free return. In that case 

the pricing equation for the call option is given in (7). (7) can be obtained from (10) by making 𝛾 

and 𝛿 equal to zero. If the delta-hedged portfolio in (1) is considered risky, which corresponds to 

full awareness of the state space, then the principle of no-arbitrage cannot be applied. However, the 

generalized principle of no-arbitrage, which is based on analogy making, and that says, “Assets with 

similar state-wise payoffs should offer the same expected returns”, can be applied. Application of that principle 

results in the recursive pricing equation shown in (10). 
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 The generalized principle of no-arbitrage or the principle of analogy making results in an 

arbitrage-free price for the call option. To see this, one just needs to realize that the existence of the 

risk neutral measure or the equivalent martingale measure is both necessary and sufficient for prices 

to be arbitrage-free. See Harrison and Kreps (1979). One can simply multiply payoffs with the 

corresponding risk neutral probabilities to get the price of an asset times the risk free rate. 

Proposition 2 shows the equivalent martingale measure associated with the analogy model developed 

here. 

 

Proposition 2 The equivalent martingale measure or the risk neutral pricing measure 

associated with the analogy model is g iven by: 

Risk neutral probability of a +1 change in state: (𝟏 − 𝜸𝒏)(𝒒) 

Risk neutral probability of a -1 change in state: (𝟏 − 𝜸𝒏)(𝟏 − 𝒒) 

Total risk neutral probability of any other change in state or jump: 𝜸𝒏 

Where 𝒒 =
𝒓+𝜹−𝜸𝑬𝒀[𝒀]

𝟏−𝜸 −∆−𝟏

∆+𝟏−∆−𝟏
 

And 𝜸𝒏 = (𝟏−𝜸)�̇�−𝑺(𝒊)(�̇�+𝜹−𝜸𝑬𝒀[𝒀])
(𝟏−𝜸)𝑬𝒀[𝒀]−𝑺(𝒊)(�̇�+𝜹−𝜸𝑬𝒀[𝒀]) 

Proof. 

By the definition of equivalent martingale measure, the following equations must hold: 

(1 − 𝛾𝑛){𝐶+1(𝑖 + 1)𝑞 + 𝐶−1(𝑖 + 1)(1 − 𝑞)} + 𝛾𝑛𝐸𝑌�𝐶𝑦(𝑖 + 1)� = �̇�𝐶(𝑖) 

(1 − 𝛾𝑛){𝑆+1(𝑖 + 1)𝑞 + 𝑆−1(𝑖 + 1)(1 − 𝑞)} + 𝛾𝑛𝐸𝑌[𝑌]𝑆(𝑖) = �̇�𝑆(𝑖) 

Substituting the values of 𝑞 and 𝛾𝑛 in the above equations and simplifying shows that the left hand 

sides of the above equations are equal to �̇�𝐶(𝑖) and �̇�𝑆(𝑖) respectively. 

∎ 
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Proposition 2 shows that the risk neutral probability of a jump occurring is different from the actual 

probability of the jump. Analogy making implies that the jump risk is priced causing a deviation 

between the actual and risk neutral probabilities. 

 

2.1 Strongly Restricted Awareness in the Continuous Limit 

In general, there are infinitely many specifications of the discrete state space described earlier that 

lead to the jump diffusion stochastic process in the continuous limit. As one example, see Amin 

(1993). For technical proofs of convergence of associated value functions, see Kushner and DeMasi 

(1978).  

In the continuous limit, the discrete stochastic process described earlier, converges to a jump 

diffusion process. However, if investors are only aware of local price changes, then they think that 

the true process is geometric Brownian motion in the continuous limit. Hence, they get the type of 

the stochastic process wrong. We refer to such unawareness as strongly restricted awareness to 

distinguish it from a situation in which the type is know but the true parameter values are not known 

(weakly restricted awareness described in section 3). 

In the continuous case presented here, we make all the assumptions made in Merton (1976) 

except one. Specifically, Merton (1976) assumes that the jump risk is diversifiable. Here, we assume 

that the jump risk is systematic and hence must be priced. To price jump risk, we do what we did for 

the discrete case. That is, we use the generalized principle of no-arbitrage or the principle of analogy 

making. However, before presenting the results, we highlight the intuition behind the convergence 

of the discrete model discussed earlier to the differential equation of the continuous process derived 

in Merton (1976). After that, we deviate from Merton (1976) and apply analogy making.  

To see the intuition of this convergence, consider the value of the delta-hedged portfolio in 

the discrete time model considered earlier with full awareness: 

Under a local price change: 

𝑉(𝑖 + 1) = 𝑆+1(𝑖 + 1)𝑥 − 𝐶+1(𝑖 + 1) = 𝑆−1(𝑖 + 1)𝑥 − 𝐶−1(𝑖 + 1) 
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=> [∆𝑉]𝑙𝑜𝑐𝑎𝑙 = ∆𝑆𝑥 − ∆𝐶 

Under a jump: 

𝑉(𝑖 + 1) = 𝑌𝑆𝑥 − 𝐶𝑦(𝑖 + 1) 

=> [∆𝑉]𝑗𝑢𝑚𝑝 = (𝑌 − 1)𝑆𝑥 − �𝐶𝑦(𝑖 + 1) − 𝐶(𝑖)� 

So, the total change in the value of the portfolio is: 

[∆𝑉]𝑡𝑜𝑡𝑎𝑙 = [∆𝑉]𝑙𝑜𝑐𝑎𝑙 + [∆𝑉]𝑗𝑢𝑚𝑝                                                                                                     (11) 

As in Merton (1976), assume that the size of the jump does not depend on the time interval; 

however, the probability of the jump depends on the time interval. This implies that as the time 

interval goes to zero, the probability of the jump also goes to zero; however, the size of the jump 

does not go to zero. For local changes, assume that the size of a local change goes to zero, as the time 

interval goes to zero; however, the probability of a local change tends to a constant. (Note, that in 

geometric Brownian motion the probability of movement never goes to zero as the probability tends 

to a constant as 𝑑𝑡 → 0, however the size goes to zero as 𝑑𝑡 → 0). With these assumptions, as 

𝑑𝑡 → 0, (11) can be written as: 

[𝑑𝑉]𝑡𝑜𝑡𝑎𝑙 = [𝑑𝑉]𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 + [𝑑𝑉]𝑃𝑜𝑖𝑠𝑠𝑜𝑛                                                                                        (12) 

[𝑑𝑉]𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = [𝑑𝑆]𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛𝑥 − [𝑑𝐶]𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛                                                                           (13) 

To find out the stochastic differential equation for [𝑑𝑉]𝑃𝑜𝑖𝑠𝑠𝑜𝑛, consider the process 𝑑𝑞 where in 

the interval 𝑑𝑡, 

𝑑𝑞 = 1 ;𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛾𝑑𝑡 

𝑑𝑞 = 0 ;𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝛾𝑑𝑡) 

It follows, 

𝐸[𝑑𝑞] = 𝛾𝑑𝑡 

And, 
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𝑉𝑎𝑟[𝑑𝑞] = 𝛾𝑑𝑡 + 𝑂((𝑑𝑡)2) 

Suppose a jump occurs in the interval 𝑑𝑡 with probability 𝛾𝑑𝑡. The stochastic differential equation 

for the jump process of the stock can now be written as: 

[𝑑𝑆]𝑗𝑢𝑚𝑝 = (𝑌 − 1)𝑆𝑑𝑞 

It follows (see Kushner and DeMasi (1978)), 

[𝑑𝑉]𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = (𝑌 − 1)𝑆𝑥𝑑𝑞 − �𝐶(𝑌𝑆, 𝑡) − 𝐶(𝑆, 𝑡)�𝑑𝑞                                                                (14) 

From Ito’s lemma, 

[𝑑𝑉]𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = (𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊)𝑥 − ��
𝜕𝐶
𝜕𝑡

+ 𝜇𝑆
𝜕𝐶
𝜕𝑆

+
𝜎2𝑆2

2
𝜕2𝑆
𝜕𝐶2

�𝑑𝑡 + 𝜎𝑆
𝜕𝐶
𝜕𝑆

𝑑𝑊�         (15) 

Where 𝜇 𝑎𝑛𝑑 𝜎 are the mean and the standard deviation of the underlying’s returns respectively, and 

𝑑𝑊 = ∅√𝑑𝑡. ∅ is a random draw from a normal distribution with mean zero and variance one. 

Substituting (14) and (15) in (12), realizing that 𝑥 = 𝜕𝐶
𝜕𝑆

 , and suppressing the subscript ‘total’, leads 

to: 

𝑑𝑉 = −�
𝜕𝐶
𝜕𝑡

+
𝜎2𝑆2

2
𝜕2𝐶
𝜕𝑆2

�𝑑𝑡 + (𝑌 − 1)𝑆
𝜕𝐶
𝜕𝑆

𝑑𝑞 − �𝐶(𝑌𝑆, 𝑡) − 𝐶(𝑆, 𝑡)�𝑑𝑞                         (16) 

As can be seen in (16), the delta-hedged portfolio is not risk-free due to the appearance of 𝑑𝑞. 

Under partial awareness, people are unaware of the proposition, “the delta-hedged portfolio is 

risky”. They believe that the proposition, “the delta-hedged portfolio is risk-free”, is true. 

Equivalently, in semantic terms, they have restricted awareness as they are unaware of states in which 

the stock price can jump. They incorrectly believe that the complete stochastic process is specified by 

the Brownian component only. That is, they incorrectly believe that the true stochastic differential 

equation is given by, 𝑑𝑉 = −�𝜕𝐶
𝜕𝑡

+ 𝜎2𝑆2

2
𝜕2𝐶
𝜕𝑆2

� 𝑑𝑡, whereas the true stochastic differential equation is 

given in (16). 
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So far, our analysis of the continuous case is similar to Merton (1976). From this point 

onwards, we depart from Merton’s assumption that the jump risk is diversifiable. Just as in the 

discrete case, we apply the generalized principle of no-arbitrage or analogy making to determine the 

price of the call option. Proposition 3 shows the partial integral differential equation (PIDE) 

obtained if we assume “full awareness” and the call price is determined through analogy making.  

 

Proposition 3 If analogy making determines the price of a European call option, then the 

following partial integral differential equation (PIDE) describes the evolution of the call 

price: 

(𝒓 + 𝜹 + 𝜸)𝑪 =
𝝏𝑪
𝝏𝒕

+
𝝈𝟐𝑺𝟐

𝟐
𝝏𝟐𝑪
𝝏𝑺𝟐

+
𝝏𝑪
𝝏𝑺

[(𝒓 + 𝜹)𝑺 − 𝑬[𝒀 − 𝟏]𝑺𝜸] + 𝑬[𝑪(𝒀𝑺, 𝒕)]𝜸            (𝟏𝟕) 

Proof. 

See Appendix A. 

∎ 

 

Note that in (17), if 𝛾 = 0 (consequently 𝛿 = 0), then the Black Scholes partial differential equation 

is obtained. So, if people are unaware of the arrival of Poisson jumps, they price the option by 

assuming that the delta-hedged portfolio is riskless. Solving equation (17) requires some assumptions 

about the distribution of jumps. Proposition 4 shows the solution of (17) and expresses the price of a 

European call option as an infinite sum of a converging series. 
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Proposition 4 If analogy making determines the price of a European call option, and the 

distribution of jumps (distribution of Y) is assumed to be log-normal with a mean of one 

(implying the distribution is symmetric around the current stock price) and variance of 𝒗𝟐, 

then the price of a European call option is g iven by 

𝑪𝒂𝒍𝒍 = �
𝒆−𝜸(𝑻−𝒕)�𝜸(𝑻 − 𝒕)�

𝒋

𝒋!

∞

𝒋=𝟎

𝑪𝒂𝒍𝒍𝑨𝑮�𝑺, (𝑻 − 𝒕),𝑲, 𝒓,𝜹,𝝈𝒋�                                             (𝟏𝟖) 

𝑪𝒂𝒍𝒍𝑨𝑮�𝑺, (𝑻 − 𝒕),𝑲, 𝒓,𝜹,𝝈𝒋� = 𝑺𝑵(𝒅𝟏) −𝑲𝒆−(𝒓+𝜹)(𝑻−𝒕)𝑵(𝒅𝟐) 

𝒅𝟏 =
𝒍𝒏 �𝑺𝑲�+ �𝒓 + 𝜹 +

𝝈𝒋𝟐

𝟐 � (𝑻 − 𝒕)

𝝈𝒋√𝑻 − 𝒕
 

𝒅𝟏 =
𝒍𝒏 �𝑺𝑲�+ �𝒓 + 𝜹 −

𝝈𝒋𝟐

𝟐 � (𝑻 − 𝒕)

𝝈𝒋√𝑻 − 𝒕
 

𝝈𝒋 = �𝝈𝟐 + 𝒗𝟐 �
𝒋

𝑻 − 𝒕
� 

𝒗𝟐 = 𝒇𝝈𝟐

𝜸
 where 𝒇 is the fraction of volatility explained by the jumps. 

Proof. 

See Appendix B. 

∎ 

Corollary 4.1 The price of a European put option is g iven by, 

𝑷𝒖𝒕 = �
𝒆−𝜸(𝑻−𝒕)�𝜸(𝑻 − 𝒕)�

𝒋

𝒋!

∞

𝒋=𝟎

𝑷𝒖𝒕𝑨𝑮�𝑺, (𝑻 − 𝒕),𝑲, 𝒓,𝜹,𝝈𝒋�                                             (𝟏𝟗) 
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Proof. 

Follows from put-call parity. 

∎ 

 

The formulas in (18) and (19) are identical to the corresponding Merton jump diffusion formulas 

except for the appearance of one additional parameter, 𝛿, which is the risk premium on the 

underlying stock. 𝐶𝑎𝑙𝑙𝐴𝐺 in (18) and 𝑃𝑢𝑡𝐴𝐺  in (19) are the analogy based formulas derived in Siddiqi 

(2013). So, (18) and (19) can be considered the jump diffusion generalizations of the formulas 

derived in Siddiqi (2013), just as Merton jump diffusion is a generalization of the Black Scholes 

formula. Figure 2 plots the value of a European call option against various values of the strike price, 

and time to maturity, as generated by (18). 
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Analogy based price of a Call option with jumps  

(𝑺 = 𝟏𝟎𝟎,𝒓 = 𝟓%,𝜸 = 𝟏 𝒑𝒆𝒓 𝒚𝒆𝒂𝒓,𝜹 = 𝟓%,𝝈 = 𝟐𝟓%,𝒇 = 𝟏𝟎%) 

Figure 2 

  The analogy jump diffusion formula has a number of advantages over the Merton jump 

diffusion formula: 

1) A key advantage over Merton jump diffusion formula is that the analogy formula does not assume 

that the jump risk is diversifiable.  For index options, the risk clearly cannot be diversified away. The 

analogy approach provides a convenient (non utility maximization) way of pricing options in the 

presence of systematic jump risk, based on an empirically observed rule.  

2) Merton jump diffusion formula cannot generate the implied volatility skew (monotonically 

declining implied volatility as a function of strike/spot) if jumps are assumed to be symmetrically 

distributed around the current stock price. The analogy formula can generate the skew even when 

the jumps are assumed to be symmetrically distributed as in (18) and (19). Assuming symmetric 

distribution of jumps around the current stock price, greatly simplifies the formula. 
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3) Even if we assume an asymmetric jump distribution around the current stock price, Merton 

formula, when calibrated with historical data, generates a skew which is a lot less pronounced (steep) 

than what is empirically observed. See Andersen and Andreasen (2002). The skew generated by the 

analogy formula is more pronounced (steep). 

  

2.2 The Implied Volatility Skew 

If prices are determined in accordance with the formulas given in (18) and (19) and the Black 

Scholes formula is used to back-out implied volatility, the skew is observed. As an example, figure 3 

shows the skew generated by assuming the following parameter values:  

(S = 100, r = 5%, γ = 1 per year, δ = 5%,σ = 25%, f = 10%, T − t = 0.5 year). 

In figure 3, the x-axis values are various values of strike/spot, where spot is fixed at 100. Note, that 

the implied volatility is always higher than the actual volatility of 25%. Empirically, implied volatility 

is typically higher than the realized or historical volatility. As one example, Rennison and Pederson 

(2012) use data ranging from 1994 to 2012 from eight different option markets to calculated implied 

volatility from at-the-money options. They report that implied volatilities are typically higher than 

realized volatilities.  
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Figure 3 

 

3. Weakly Restricted Awareness: Unawareness of True Parameter Values 

If people are unaware of some states in a discrete stochastic process, then, in the continuous limit, it 

leads to two possibilities: 1) They may be unaware of the type of the true stochastic process. This 

can be termed strongly restricted awareness. 2) They are aware of the type of the true stochastic process 

but not of the true parameter values. Such awareness can be called weakly restricted awareness. 

 The first possibility has been explored in the previous section. In the previous section, we 

showed that partial awareness in which people are unaware of the proposition, “the delta-hedged 

portfolio is risky”, is equivalent to restricted awareness in which people are unaware of some states. In 

the previous section, we assumed that the distribution of states is such that under partial or restricted 

awareness, the stochastic process is geometric Brownian motion, whereas the true stochastic process 
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is jump diffusion.  While under partial or restricted awareness, the principle of no-arbitrage (assets with 

identical state-wise payoffs must have identical state-wise returns) can be applied to price a call 

option, under full awareness, it cannot be applied as the ‘identical asset’ does not exist anymore. If 

the generalized principle of no-arbitrage or analogy making (assets with similar state-wise payoffs 

assets should offer similar state-wise returns on average) is applied, then it leads to a new option 

pricing formula (Analogy based jump diffusion formula), which can be considered a generalization 

of Merton’s jump diffusion formula. If option prices are determined in accordance with the Analogy 

formula, and the Black Scholes formula is used to back-out implied volatility, then the implied 

volatility skew is observed. Hence, the sudden appearance of the skew after the crash of 1987 can be 

thought of as arising due to an increase in awareness in which people became aware of the 

proposition, “the delta-hedged portfolio is risky”. 

 In this section, we assume that the distribution of states is such that the true stochastic 

process is geometric Brownian motion in the continuous limit. Restricted awareness in which people are 

unaware of at least one state or equivalently partial awareness in which people are unaware of the 

proposition, “the delta-hedged portfolio is risky” then amounts to people being unaware of the true 

parameter values. That is, the true type or form of the stochastic process is known, however, the 

true parameter values are not known. 

 The set-up of the model here is identical to the one described in the previous section except 

for the distribution of states. As before, assume a discrete lattice of states. Let 𝑆 = 𝑆0 at 𝑡 = 0. 

Assume that at 𝑡 = ∆𝑡, the following three possible state transitions can take place: 

𝑆0 → 𝑆0 + ∆ℎ;𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 

𝑆0 → 𝑆0 − ∆ℎ;𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞 

𝑆0 → 𝑆0 − 𝜖∆ℎ;𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙 

Where 𝑝 + 𝑞 + 𝑙 = 1, and 𝜖 > 0. 

Assume further: 

1) S follows a Markov process i.e the probability distribution in the future depends only on where it 

is now. 
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2) At each point in time, 𝑆 can only change in three ways: up by ∆ℎ or down by either ∆ℎ or 𝜖∆ℎ. 

 Suppose 𝑙 is very small. Assume that initially people are only aware of an up movement by 

∆ℎ or a down movement by ∆ℎ. That is, they are unaware of the down movement by 𝜖∆ℎ. It is 

straightforward to note that, in this set-up, people have partial awareness as unawareness of the third 

state amounts to being unaware of the proposition, “the delta-hedged portfolio is risky”. That is, 

they believe the following proposition to be true, “the delta-hedged portfolio is risk-free”.  

 For simplicity, and without loss of generality, we assume that the state probabilities are also 

misperceived such that 𝑝′∆ℎ + 𝑞′(−∆ℎ) = 𝑝∆ℎ + 𝑞(−∆ℎ) + 𝑙(−𝜖∆ℎ), where the sum of the 

misperceived probabilities, 𝑝′ + 𝑞′, is one. This means that the expected return on the stock is not 

misperceived due to restricted awareness; however, the variance is misperceived. Proposition 5 

shows the connection between the true and the misperceived stochastic processes in the continuous 

limit. 

 

Proposition 5 The misperceived stochastic process under partial awareness (weak restricted 

awareness) g iven by 𝒅𝑺 = 𝝁𝒑𝑺𝒅𝒕 + 𝝈𝒑𝒅𝒛 corresponds to the true stochastic process g iven 

by 𝒅𝑺 = 𝝁𝑻𝑺𝒅𝒕 + 𝝈𝑻𝑺𝒅𝒛 = 𝝁𝒑𝑺𝒅𝒕 + 𝝈𝒑{𝟏 + 𝒍(𝝐𝟐 − 𝟏)∆𝒉}𝒅𝒛. 𝑾𝒉𝒆𝒓𝒆 𝒅𝒛 = ∅√𝒅𝒕, and 

∅~𝑵(𝟎,𝟏). 

Proof. 

See Appendix C. 

∎ 

 

As awareness grows, people become aware of the true stochastic process. Consequently, they realize 

that the principle of no-arbitrage cannot be used to price options as the delta-hedged portfolio is no 

longer identical to the risk free asset. Instead, the generalized principle of no-arbitrage or analogy 

making is used. Proposition 6 shows the partial differential equation associated with a European call 

option in this set-up. 
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Proposition 6  If analogy making sets the price of a European call option, the analogy 

option pricing partial differential Equation (PDE) is  

(𝒓 + 𝜹)𝑪 =
𝝏𝑪
𝝏𝒕

+
𝝏𝑪
𝝏𝑺

(𝒓 + 𝜹)𝑺 +
𝝏𝟐𝑪
𝝏𝑺𝟐

𝝈𝟐𝑺𝟐

𝟐
 

Proof. 

See appendix D. 

∎ 

 

Proposition 7 shows the solution of the partial differential equation shown in proposition 6. 

 

Proposition 7 The formula for the price of a European call is obtained by solving the 

analogy based PDE. The formula is  

𝑪 = 𝑺𝑵(𝒅𝟏) −𝑲𝒆−(𝒓+𝜹)(𝑻−𝒕)𝑵(𝒅𝟐)                                                                                        (𝟐𝟎)  

where 𝒅𝟏 =
𝒍𝒏(𝑺/𝑲)+(𝒓+𝜹+𝝈

𝟐

𝟐 )(𝑻−𝒕)

𝝈√𝑻−𝒕
 and 𝒅𝟐 =

𝒍𝒏�𝑺𝑲�+�𝒓+𝜹−
𝝈𝟐

𝟐 �(𝑻−𝒕)

𝝈√𝑻−𝒕
 

Proof. 

See Appendix E. 

▄ 

Corollary 7.1 The formula for the analogy based price of a European put option is 

𝑲𝒆−(𝒓+𝜹)(𝑻−𝒕)𝑵(−𝒅𝟐) − 𝑺𝑵(−𝒅𝟏)                                                                                              (𝟐𝟏) 

Proof. Follows from put-call parity. 

∎ 



24 
 

 

The formulas given in proposition 7 are identical to the corresponding Black Scholes formulas 

except for the appearance of 𝛿 in the new formulas, which is the risk premium on the underlying. If 

the Black Scholes formula represents strongly restricted awareness, then the correct analogy based 

formulas are (18) and (19). Those formulas, termed analogy based jump diffusion formulas, are a 

generalization of Merton’s jump diffusion formulas. If the Black Scholes formula represents weakly 

restricted awareness, then the correct analogy based formulas are derived in this section and are given in 

proposition 7. Note, that the analogy formulas are considerably simpler (given in (20) and (21)) if we 

assume weakly restricted awareness. 

 

3.1 Implied Volatility Skew 

If option prices are determined in accordance with the formulas given in (20) and (21), and the Black 

Scholes model is used to back-out implied volatility, then the skew is observed as figure 4 shows.  
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Figure 4 

 

4. Strongly Restricted or Weakly Restricted Awareness? 

Does the Black Scholes option pricing model represent strongly restricted awareness or weakly restricted 

awareness? If it represents strongly restricted awareness, then the analogy based formulas (under full 

awareness) are given in (18) and (19). If it represents weakly restricted awareness, then the relevant 

analogy based formulas (under full awareness) are given in (20) and (21).  

 The major disadvantage of (18) and (19) is that they are more complex than (20) and (21) as 

they have two additional parameters. However, they also have a key advantage over (20) and (21) as 

they can capture both the implied volatility skew as well as the implied volatility smile.  In reality, for 
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index option, the skew is observed (implied volatility always declines as K/S rises). However, for 

options on individual stocks both the skew as well as the smile (implied volatility of deep in-the-

money as well as deep-out-of-the money options is higher than the implied volatility of at-the-

money options) is observed. Figure 5 shows one instance of an implied volatility smile generated by 

(18). Here, we assume that the risk premium on the underlying stock is 1%, and the fraction of 

volatility explained by jumps is 40%. The rest of the parameters are the same as in figure 5. 

 In general, the skew generated by (18) and (19) turns into a smile as the risk premium on the 

underlying falls (approaches the risk-free rate). This is consistent with empirical evidence as 

individual stocks are typically considered to have lower risk premiums compared to the risk 

premiums on indices. It seems that for individual stock options, where both the skew and the smile 

is observed, and for currency and commodity options, (18) and (19) are required. However, for 

index options, simpler formulas given in (20) and (21) are appropriate. 
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Figure 5 

 

5. Conclusions 

It is interesting to try and model forgetfulness in this set-up. Forgetfulness can be described as an 

opposite process to growing awareness. Suppose one is initially aware that ‘a delta-hedged portfolio 

is risky’ but observes for a considerable length of time that ‘a delta-hedged portfolio is risk-free’. He 

may be tempted to think that the stochastic process has changed and the only possible states are 

those in which ‘a delta-hedged portfolio is risk-free’. Thinking of awareness in the context of a 

stochastic process allows sufficient flexibility to model forgetfulness. 

 It is also interesting to compare the value of a signal under full-awareness vs. the value of the 

same signal under partial awareness. Quiggin (2013b) shows that the sum of value of awareness and value 

of information, appropriately defined, is a constant. As awareness corrects either an undervaluation or 

an overvaluation, positive and negative information signals have different impacts post-awareness 
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when compared with pre-awareness impacts. Perhaps, this asymmetry in impacts can be exploited to 

devise an econometric test that would help in identifying events around which awareness changed. 
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Appendix D 

In the analogy case with full awareness, the expected growth rate of the portfolio 𝑆 𝜕𝐶
𝜕𝑆
− 𝐶 is 𝑟 + 𝛿. 

To deduce the analogy based PDE consider: 

𝑉 = 𝑆
𝜕𝐶
𝜕𝑆

− 𝐶 

⇒ 𝑑𝑉 = 𝑑𝑆
𝜕𝐶
𝜕𝑆

− 𝑑𝐶 

Where 𝑑𝑆 = 𝑢𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊 and by Ito’s Lemma 𝑑𝐶 = �𝑢𝑆 𝜕𝐶
𝜕𝑆

+ 𝜕𝐶
𝜕𝑡

+ 𝜎2𝑆2

2
𝜕2𝐶
𝜕𝑆2

� 𝑑𝑡 + 𝜎𝑆 𝜕𝐶
𝜕𝑆
𝑑𝑊 

𝐸[𝑑𝑉] = 𝐸[𝑑𝑆]
𝜕𝐶
𝜕𝑆

− 𝐸[𝑑𝐶] 

=> (𝑟 + 𝛿)𝑉𝑑𝑡 = −�
𝜕𝐶
𝜕𝑡

+
𝜎2𝑆2

2
𝜕2𝐶
𝜕𝑆2

� 𝑑𝑡 

⇒ (𝑟 + 𝛿) �𝑆
𝜕𝐶
𝜕𝑆

− 𝐶� = −�
𝜕𝐶
𝜕𝑡

+
𝜎2𝑆2

2
𝜕2𝐶
𝜕𝑆2

� 

=> (𝑟 + 𝛿)𝐶 = (𝑟 + 𝛿)𝑆
𝜕𝐶
𝜕𝑆

+
𝜕𝐶
𝜕𝑡

+
𝜎2𝑆2

2
𝜕2𝐶
𝜕𝑆2

                                                                                      

 

Appendix E 

The analogy based PDE derived in Appendix D can be solved by converting to heat equation and 

exploiting its solution.  

Start by making the following transformation: 

𝜏 =
𝜎2

2
(𝑇 − 𝑡) 
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𝑥 = 𝑙𝑛
𝑆
𝐾

=> 𝑆 = 𝐾𝑒𝑥 

𝐶(𝑆, 𝑡) = 𝐾 ∙  𝑐(𝑥, 𝜏) = 𝐾 ∙ 𝑐 �𝑙𝑛 �
𝑆
𝐾
� ,
𝜎2

2
(𝑇 − 𝑡)� 

It follows, 

𝜕𝐶
𝜕𝑡

= 𝐾 ∙
𝜕𝑐
𝜕𝜏

∙
𝜕𝜏
𝜕𝑡

= 𝐾 ∙
𝜕𝑐
𝜕𝜏

∙ �−
𝜎2

2
� 

𝜕𝐶
𝜕𝑆

= 𝐾 ∙
𝜕𝑐
𝜕𝑥

∙
𝜕𝑥
𝜕𝑆

= 𝐾 ∙
𝜕𝑐
𝜕𝑥

∙
1
𝑆

 

𝜕2𝐶
𝜕𝑆2

= 𝐾 ∙
1
𝑆2

∙
𝜕2𝐶
𝜕𝑥2

−  𝐾 ∙
1
𝑆2
𝜕𝐶
𝜕𝑥

 

Plugging the above transformations into (A1) and writing �̃� = 2(𝑟+𝛿)
𝜎2

, we get: 

𝜕𝑐
𝜕𝜏

=
𝜕2𝑐
𝜕𝑥2

+ (�̃� − 1)
𝜕𝑐
𝜕𝑥

− �̃�𝑐                                                                                                        (𝐵1) 

With the boundary condition/initial condition: 

𝐶(𝑆,𝑇) = 𝑚𝑎𝑥{𝑆 − 𝐾, 0} 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑐(𝑥, 0) = 𝑚𝑎𝑥{𝑒𝑥 − 1,0} 

To eliminate the last two terms in (B1), an additional transformation is made: 

𝑐(𝑥, 𝜏) = 𝑒𝛼𝑥+𝛽𝜏𝑢(𝑥, 𝜏) 

It follows, 

𝜕𝑐
𝜕𝑥

= 𝛼𝑒𝛼𝑥+𝛽𝜏𝑢 + 𝑒𝛼𝑥+𝛽𝜏
𝜕𝑢
𝜕𝑥

 

𝜕2𝑐
𝜕𝑥2

= 𝛼2𝑒𝛼𝑥+𝛽𝜏𝑢 + 2𝛼𝑒𝛼𝑥+𝛽𝜏
𝜕𝑢
𝜕𝑥

+ 𝑒𝛼𝑥+𝛽𝜏
𝜕2𝑢
𝜕𝑥2

 

𝜕𝑐
𝜕𝜏

= 𝛽𝑒𝛼𝑥+𝛽𝜏𝑢 + 𝑒𝛼𝑥+𝛽𝜏
𝜕𝑢
𝜕𝜏
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Substituting the above transformations in (B1), we get: 

𝜕𝑢
𝜕𝜏

=
𝜕2𝑢
𝜕𝑥2

+ (𝛼2 + 𝛼(�̃� − 1) − �̃� − 𝛽)𝑢 + �2𝛼 + (�̃� − 1)�
𝜕𝑢
𝜕𝑥

                                                     (𝐵2) 

Choose 𝛼 = − (�̃�−1)
2

 and 𝛽 = − (�̃�+1)2

4
. (B2) simplifies to the Heat equation: 

𝜕𝑢
𝜕𝜏

=
𝜕2𝑢
𝜕𝑥2

                                                                                                                                                   (𝐵3) 

With the initial condition: 

𝑢(𝑥0, 0) = 𝑚𝑎𝑥��𝑒(1−𝛼)𝑥0 − 𝑒−𝛼𝑥0�, 0� = 𝑚𝑎𝑥 ��𝑒�
�̃�+1
2 �𝑥0 − 𝑒�

�̃�−1
2 �𝑥0� , 0� 

The solution to the Heat equation in our case is: 

𝑢(𝑥, 𝜏) =
1

2√𝜋𝜏
� 𝑒−

(𝑥−𝑥0)2
4𝜏

∞

−∞

𝑢(𝑥0, 0)𝑑𝑥0 

Change variables: = 𝑥0−𝑥
√2𝜏

 , which means: 𝑑𝑧 = 𝑑𝑥0
√2𝜏

. Also, from the boundary condition, we know 

that 𝑢 > 0 𝑖𝑓𝑓 𝑥0 > 0.  Hence, we can restrict the integration range to 𝑧 > −𝑥
√2𝜏

 

𝑢(𝑥, 𝜏) =
1

√2𝜋
� 𝑒−

𝑧2
2 ∙ 𝑒�

�̃�+1
2 ��𝑥+𝑧√2𝜏�𝑑𝑧 −

∞

− 𝑥
√2𝜋

1
√2𝜋

� 𝑒−
𝑧2
2

∞

− 𝑥
√2𝜏

∙ 𝑒�
�̃�−1
2 ��𝑥+𝑧√2𝜏�𝑑𝑧 

=:𝐻1 − 𝐻2 

Complete the squares for the exponent in 𝐻1: 

�̃� + 1
2

�𝑥 + 𝑧√2𝜏� −
𝑧2

2
= −

1
2
�𝑧 −

√2𝜏(�̃� + 1)
2

�
2

+
�̃� + 1

2
𝑥 + 𝜏

(�̃� + 1)2

4
 

=:−
1
2
𝑦2 + 𝑐 

We can see that 𝑑𝑦 = 𝑑𝑧 and 𝑐 does not depend on 𝑧. Hence, we can write: 
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𝐻1 =
𝑒𝑐

√2𝜋
� 𝑒−

𝑦2
2 𝑑𝑦

∞

−𝑥
√2𝜋� −�𝜏 2� (�̃�+1)

 

A normally distributed random variable has the following cumulative distribution function: 

𝑁(𝑑) =
1

√2𝜋
� 𝑒−

𝑦2
2 𝑑𝑦

𝑑

−∞

 

Hence, 𝐻1 = 𝑒𝑐𝑁(𝑑1) where 𝑑1 = 𝑥
√2𝜋� + �𝜏 2� (�̃� + 1) 

Similarly,  𝐻2 = 𝑒𝑓𝑁(𝑑2) where 𝑑2 = 𝑥
√2𝜋� + �𝜏 2� (�̃� − 1) and 𝑓 = �̃�−1

2
𝑥 + 𝜏 (�̃�−1)2

4
 

The analogy based European call pricing formula is obtained by recovering original variables: 

𝐶𝑎𝑙𝑙 = 𝑆𝑁(𝑑1) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2) 

Where𝒅𝟏 =
𝒍𝒏(𝑺/𝑲)+(𝒓+𝜹+𝝈

𝟐

𝟐 )(𝑻−𝒕)

𝝈√𝑻−𝒕
 𝑎𝑛𝑑 𝒅𝟐 =

𝒍𝒏�𝑺𝑲�+�𝒓+𝜹−
𝝈𝟐

𝟐 �(𝑻−𝒕)

𝝈√𝑻−𝒕
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