Working Paper No. 196

‘Genetic Erosion in Traditional Food Crops in the Pacific Islands: Background, Socioeconomic Causes and Policy Issues’- WP193 Amended

by

Clem Tisdell

July 2014
The *Economics, Environment and Ecology* set of working papers addresses issues involving environmental and ecological economics. It was preceded by a similar set of papers on *Biodiversity Conservation* and for a time, there was also a parallel series on *Animal Health Economics*, both of which were related to projects funded by ACIAR, the Australian Centre for International Agricultural Research. Working papers in *Economics, Environment and Ecology* are produced in the School of Economics at The University of Queensland and since 2011, have become associated with the Risk and Sustainable Management Group in this school.

Production of the *Economics Ecology and Environment* series and two additional sets were initiated by Professor Clem Tisdell. The other two sets are *Economic Theory, Applications and Issues* and *Social Economics, Policy and Development*. A full list of all papers in each set can be accessed at the following website: http://www.uq.edu.au/economics/PDF/staff/Clem_Tisdell_WorkingPapers.pdf

For further information about the above, contact Clem Tisdell, Email: c.tisdell@economics.uq.edu.au

In addition, the following working papers are produced with the Risk and Sustainable Management Group and are available at the website indicated. *Murray-Darling Basin Program, Risk and Uncertainty Program, Australian Public Policy Program, Climate Change Program*: http://www.uq.edu.au/rsmg/working-papers-rsmg

For further information about these papers, contact Professor John Quiggin, Email: j.quiggin@uq.edu.au
The genetic diversity of traditional food crops is rapidly declining in the Pacific Islands, as is also true globally. This loss in the Pacific is of particular concern worldwide because some of these islands (such as New Guinea) are primary centres of origin of several globally important food crops (e.g. bananas and sugar cane). This article provides background information on the evolution of the diversity of these crops, investigates (within the Pacific context) the socioeconomic reasons for this loss, analyses its possible economic consequences, and considers the economic benefits and costs of conserving crop varieties. The potential economic benefits foregone by failing to conserve a crop variety that possesses genetic attributes which would counter a productivity reducing new disease or environmental development is shown to depend on the nature of the demand function for the crop’s production. Other things being held constant, this potential loss is greater the larger is the absolute demand for a crop’s production and the more inelastic is this demand. Staple crop’s production seem to satisfy these conditions, especially the first one. In fact, gene banks in the Pacific Islands have concentrated on conserving varieties of staple crops. However, ignoring the conservation of minor traditional crops may not always be optimal, given that circumstances change. The economics and costs associated with the conservation of crop diversity in situ and ex situ are discussed. The effective analysis of this is shown to be challenging but it is an important consideration in making conservation decisions. Unfortunately, this subject appears to have received little attention in the Pacific as well as globally.

Keywords: biodiversity loss, crop varieties, gene banks, genetic capital, food crops, food security, Pacific Islands, sustainable development.

JEL Classification: Q1, Q2, Q3, O1.
‘Genetic Erosion in Traditional Food Crops in the Pacific Islands: Background, Socioeconomic Causes and Policy Issues’ WP 193 Amended

1. Introduction and Purpose

Along with climate change, loss of biodiversity (particularly the disappearance of existing genetic resources) is a major threat to the long-term maintenance of human well-being. Because its effects are less visible than those of global warming (which itself is a powerful force for biodiversity loss), loss of genetic resources has received much less public attention than global warming. Nevertheless, its consequences on human well-being may eventually be similar to those of a slowly spreading cancer on its victim. The FAO has reported that in the 20th century ‘some 75 percent of plant genetic diversity has been lost as farmers worldwide have left their multiple local varieties and landraces for genetically uniform, high-yielding varieties’ (FAO, 2004, Box 5). There is also concern that human beings depend on very few plants and animal species for their food supply. It is estimated that ‘75 percent of the world’s food is generated from only 12 plant and five animal species’ (FAO, 2004, Box 5). Furthermore, the FAO reports that about 1,000 domestic animal breeds were lost in the last century and about a third of remaining breeds (of which there are believed to be about 1,335) are threatened with extinction (FAO, No date).

The purpose of this paper is to examine the loss in genetic diversity of traditional food crops in the Pacific Islands. In doing so, it will consider the origins of crops and crop varieties in these islands, their importance globally and provide some information about the extent of the loss of crop varieties in the Pacific Islands. Also, it aims to identify the socio-economic causes of such losses and presents economic analysis of their potential consequences for human well-being. Moreover, policy measures and methods to conserve the variety of crops in the Pacific Islands are discussed and economic difficulties of assessing these are highlighted.
2. The Global Contribution of the Pacific Islands to Food Crops and their Varieties

It is not well known that the Pacific Islands contain one of the earliest areas in which agriculture first began. Renfrew (2007, pp. 210-211) indicates that gardens for the supply of food were established in New Guinea around 9000 years ago, probably around 500 years or so after wheat was first grown in the Levant in the Near East. New Guinea is believed to be second centre in the world where plant cultivation began. Plant cultivation in South Asia, the Americas and China came much later.

While there is some controversy about the exact time-period in which the cultivation of food plants began in New Guinea, strong archaeological evidence indicates that it is one of the earliest centres in the world where agriculture evolved in the Holocene period (Denham et al., 2003), and it did so independently of other centres where agriculture originated. Taro, *Colocasia esculenta* and bananas, *Musa* spp. and yam, *Dioscorea* spp. have been identified as some of the significant species cultivated in ancient times in New Guinea (Denham et al., 2003; Fullagar et al., 2006). Table 1 provides a list of food corps cultivated mostly in Melanesia in ancient times and which subsequently, diffused to other Pacific Islands. This, however, is not a complete list of indigenous crops of the Pacific Islands.

As the cultivation of these crops spread in the Pacific, many local varieties were developed in order to make them better adapted to local ecological conditions. However, in recent times, many of these cultivated varieties have been lost as a result of changing socio-economic conditions and the stock of their wild relatives (for example, in New Guinea) is being eroded with the occurrence of economic growth and change. Most natural scientists believe that this narrowing of the genetic stock of these crops poses a serious threat to the sustainability of their contribution to food production. Threats to such sustainability are not only relevant to the Pacific Islands themselves but also to other countries which rely on these crops for some of their agricultural production. For example, the preservation of the genetic capital for the bananas and for sugar cane could make a contribution to the sustainability of production from these crops in Australia.
Table 1: A list of various food crops believed to have originated in the Pacific Islands (especially New Guinea) together with relevant comments.

<table>
<thead>
<tr>
<th>Species</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananas and Plantains</td>
<td>It is believed the wild Emusa banana was first domesticated in New Guinea and then it dispersed to Southeast Asia (Denham et al., 2003, p. 193) and subsequently, to other islands in the Pacific as they were settled. Most banana domesticates are derived from Emusa bananas.</td>
</tr>
<tr>
<td>Musa spp.</td>
<td></td>
</tr>
<tr>
<td>Breadfruit</td>
<td>Breadfruit has its origins in the Pacific Islands with New Guinea, the Mariana Islands and Palau being the source of species from which hundreds of varieties have been derived in the Pacific Islands. Its cultivation also spread to Southeast Asia and Southern India. European colonists introduced breadfruit from the Pacific to the Caribbean to help feed slaves there (Rix and Davis, undated).</td>
</tr>
<tr>
<td>Artocarpus altilis</td>
<td></td>
</tr>
<tr>
<td>Coconut</td>
<td>It is “thought to have originated in the coastal areas of Southeast Asia and Melanesia. In prehistoric times, it spread naturally on ocean currents eastward to the tropical Pacific Islands and westward to India and all the way to East Africa. Around 4,500 years ago, voyaging Polynesians and Indo-Malayans introduced their preferred forms to the various Pacific Islands” (Library of the University of Hawaii at Manoa, 2012a)</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td></td>
</tr>
<tr>
<td>Sugar Cane</td>
<td>All six species of sugar cane are native to New Guinea and have been used by humans for over 8000 years. Today Saccharum officinarum is the species mostly grown for sugar production. The use of sugar cane initially spread from New Guinea to the north into Asia, then to the east in Pacific (Benson, 2012, pp. 98-102) and subsequently, more widely.</td>
</tr>
<tr>
<td>Saccharum spp.</td>
<td></td>
</tr>
<tr>
<td>Taro</td>
<td>Although it had previously been hypothesized that taro cultivation first occurred in Asia, Fullager et al. (2006) have produced evidence that taro was most likely first cultivated in New Guinea and probably also in the Solomon Islands. Cultivation of several other aroid species has also originated in Melanesia.</td>
</tr>
<tr>
<td>Colocasia esculata</td>
<td></td>
</tr>
<tr>
<td>Yams</td>
<td>Fullager et al. (2006) have completed research indicating that New Guinea was the place where yams were originally domesticated. Their cultivation occurred subsequently in Southeast Asia and spread to other Pacific Islands.</td>
</tr>
<tr>
<td>Dioscorea spp.</td>
<td></td>
</tr>
</tbody>
</table>

Of course, some important food crops in the Pacific Islands were introduced from other parts of the world. The sweet potato (*Ipomoea batatas*) is an interesting and important example. It is reported that “Central America and Peru are generally accepted as possible centres of origin for this crop. Sweet potato cultivation in the eastern and central Pacific predates European contact by several hundred years, possibly occurring as early as 1000 CE [about
3000 years ago)” (Library of the University of Hawaii at Manoa, 2012b). It may have been introduced as the result of early contact of Polynesians with South America. It is now an important crop in the Pacific and in many other developing countries. A multitude of different varieties of sweet potatoes have been developed in the Pacific Islands.

Probably, the number of varieties of traditional cultivated crops in the Pacific increased over hundreds of years once agriculture commenced there but following European contact and the greater integration of the Pacific Islands into the global economic system, the number of these varieties declined and in recent times, this loss appears to be happening at an accelerating rate. Taking, for example, taro (*Colocasia esculenta*), this pattern might be like that shown hypothetically by curve ABC in Figure 1. The exact relationship is unknown because all the existing varieties of taro have not been fully documented, let alone many of the varieties which existed in the past.

![Figure 1: The hypothetical relationship between the number of cultivated traditional varieties of taro available in the Pacific Islands and the efflux of time. Similar patterns probably apply to other crops which were cultivated before European contact, e.g. bananas.](image)

3. **Socio-Economic Causes of the Genetic Erosion of Traditional Food Crops in the Pacific Islands**

There are several socio-economic reasons why many varieties of traditional food crops are being lost in the Pacific. Similar socio-economic causes are present elsewhere in the world. Their relative importance has not been investigated empirically as yet. They include the
1. **Market requirements.** Many economies in the Pacific have become increasingly market-oriented and some of their food production is exported to foreign markets. There is an economic incentive to grow varieties of crops (and species of crops) that transport and store well and which are most preferred by buyers. In some markets, standardized produce is preferred, for example, for supplies to supermarkets. Masibalavu et al. (2002) concluded (from a survey in Fiji) that there has been significant erosion in taro landraces in Fiji and that this is associated with increasing market demands and use of taro hybrid varieties by many farmers. A report prepared by the Government of PNG points out that semi-subsistence farmers there tend to grow crop species, cultivars and landraces that are preferred by consumers and which can be sold for cash and that this is resulting in genetic erosion (FAO, 2009, p.7). Similarly, the Fijian Government has pointed out that traditional varieties of food crops are now rarely seen in local markets (FAO, 2008, p. 13) and in some localities, only export varieties are being grown (FAO, 2008, p. 17).

2. **Improved varieties.** The development of new crop varieties which are more profitable to grow or give greater yields than existing ones usually result in the erosion of existing varieties. However, the new varieties may prove to be vulnerable to new plant diseases whereas some of the varieties which are lost may have possessed resistance to these diseases. Individual farmers have no economic incentive to save traditional crop varieties to cater for this possibility. This is because the event is uncertain, is likely to be distant in time, and they are likely to be unable to appropriate significant economic benefits from their conservation decision. It might also be noted that the development of improved varieties of crops tends to be a two-edged sword. It raises current economic returns but it also accelerates the loss of crop diversity and in the long-term (Tisdell, 2014a) this could endanger the sustainability of agricultural production.

3. **Decoupling of the production of crops from local ecogeographic conditions.** Many scientific advances in agriculture reduce the extent to which the growing of crops depends on local environmental conditions. For example, artificial fertilizers, pesticides, irrigation and so on help to reduce this dependence. Therefore, crop varieties which were once the most productive in natural local conditions are often
less productive than new varieties (improved varieties) which respond well to a package of human-regulated inputs. In many parts of the world, such decoupling has resulted in global loss of livestock breeds (Tisdell, 2003). Furthermore, as is well known, the ‘Green Revolution’ has resulted in considerable erosion of crop varieties (Alauddin and Tisdell, 1991).

4. **Crop substitution.** In modern times, some new crops have been introduced to the Pacific. Their cultivation resulted in land that was once used for traditional crops being used for these new crops. As a result, several local crop varieties would have been lost. Furthermore, the extension of cultivation of particular crops has a similar effect. The commercial growing of sugar cane in Fiji for exports of sugar most likely displaced some varieties of traditional crops. In PNG, the growing of commercial crops for export, such as, oil palm, coffee and cocoa, has similar effects. The extension of markets (for example, as a result of freer international trade) is a major influence on the loss of local varieties of food plants and is also a factor in the loss of local breeds of domesticated animals (Tisdell, 2003). This is because market extension promotes regional specialization in production. As a result of market extension, some agricultural activities which once existed in a region and resulted in distinct varieties of crops or breeds of animals being conserved may cease being economical. They may be replaced by other economic activities. Consequently, a global loss in biodiversity occurs.

5. **Urbanisation/centralisation of populations.** Considerable migration has occurred from the more remote places to central places in Pacific Island states and territories. In some cases, this has resulted in reduced crop cultivation in remote areas and subsequent loss of local landraces. Similarly, with the spread of urban centres agricultural land is lost and this could have a negative effect on the survival of some plant varieties. Furthermore, the lifestyles and demand for different types of food of urban residents differ from those of rural residents and this alters the pattern of demand for food.

6. **Changed food habits and tastes.** Food habits and tastes can change over time as a result of cultural change, alterations in the structure of society (including a society’s urbanisation, and changes in the nature of work) and as a result of advertising. For example, in households where family members are involved in wage or salary
employment in urban areas, their demand for convenience foods is likely to increase. Furthermore, as a result of globalization and increased international contact, the range of available foods (for example, the availability of foods which are popular abroad) can be expected to increase. All of these factors can result in the demand for traditional foods falling and consequently, reduce the extent of their cultivation. For example, globalization has resulted in the demand for cereals (including wheat and rice) increasing in the Pacific Islands. Cereals are used to supply new types of food in the Pacific Islands, such as bread, wheat biscuits and so on. These trends are further reinforced by the presence of fast food developments in some places in parts of the Pacific, for example, the establishment of McDonalds outlets. Furthermore, migration has played a role in influencing food habits. For instance, the migration of Indians to Fiji has influenced the pattern of food consumption there.

7. **Increasing importance of monetary transactions and greater availability of foreign currency.** Monetary exchange has increased in importance in the Pacific Islands and subsistence living and barter have become less common. Hence, the market system is becoming more widespread and market extension is occurring. This facilitates loss of crop biodiversity (see point 4). In many Pacific Island nations and territories, the demand for processed food (much of which is imported) is driven by the growing importance of cash income and monetary exchange, as well as urbanisation. The growth of the cash economy is facilitated by monetary remittances and by funds supplied by overseas aid. This phenomenon has resulted in some Pacific Island nations and territories being classified as MIRAB economies (Bertram and Watters, 1985; Bertram, 2006). Although this classification cannot be applied to all Pacific Island nations and territories (Tisdell, 2014a) even in cases where the classification is inappropriate or barely appropriate (such as Papua New Guinea), the size of their monetary economies have grown in importance. When foreign funds flow into a Pacific Island nation as a result of overseas remittances, aid or the earning of foreign exchange as a result of exports, overseas funds become available to import food and other commodities. Dependence on local food supplies declines. While imports increase the range of foods available to Pacific islanders, greater reliance on imports makes Pacific islanders economically vulnerable to a decline in foreign aid, reduced overseas remittances, or a fall in export earnings.
8. Remittances and migration patterns. Remittances to family members by migrants are likely to reduce economic incentives to undertake agricultural production in the Pacific Islands. There is evidence that in some jurisdiction, remittances are mainly used for consumption (Brown et al., 2013). In addition, the composition of the population in rural areas may be skewed towards the elderly (because younger family members tend to migrate). The elderly are less able to engage in agricultural production and this may further result in loss of varieties of traditional crops.

9. Local supplies of agricultural produce restricted by transport difficulties. The territories of many Pacific Island nations are scattered, some parts are remote and are relatively inaccessible in relation to their central urban places. For example, transport between the outer islands of many Pacific states is costly and infrequent. This reduces their economic potential to supply food to the main urban centres in the Pacific Islands and increases the dependence of Pacific Island nations on imported food. In many cases, it is cheaper to import food from abroad rather than source if from remote areas in the Pacific Islands. There is also a further complication. As pointed out by the Government of PNG, most traditional types of food crops in the Pacific Islands are highly perishable and this limits the scope for their transport and storage. The PNG Government recommends that greater attention be given to the production of flour from root and tuber crops near their source of production in order to reduce this problem (FAO, 2009, p. 16). Also some crops such as bananas can be dried (dessicated).

For ease of recall, Table 2 lists the factors that have been identified as causing a reduction in the varieties of traditional crops grown in the Pacific. In addition to these influences, failure to take adequate account of the environmental consequences of transporting food supplies could contribute to this loss, as is explained below.
Table 2: List of factors that have probably contributed to the loss of varieties of traditional food crops in the Pacific Islands

1. Meeting market requirements, including export demand
2. The availability of improved varieties of traditional crops
3. The decoupling of crop production from local ecogeographic conditions
4. Crop substitution. The production of traditional crops being replaced by the growing of new species of crops
5. Urbanisation and centralisation of populations
6. Changed food habits and tastes
7. Increasing importance of monetary transactions and the availability of foreign currency
8. Remittances (to family members) may reduce supply of locally produced food and the cultivation of traditional crops
9. Transport difficulties restrict food supplies from remote areas of Pacific Island
10. Failure to take full account of the environmental consequences of the transport of food supplies can limit supply from local sources

Note that the price of food products does not reflect the environmental cost of their supply, for example, the extent of which their transport results in increased CO₂ emissions. For example, food which is transported over greater distances is likely to use a greater amount of fossil fuels and result in higher level of CO₂ emissions than food supplied locally by farmers. This is why some social groups favour increased reliance on locally produced fresh food, for example supplied in farmers’ markets. However, it is not only the nature of food transportation that has consequences for CO₂ emissions. The use of artificial fertilisers can, for instance, add to these emissions. Furthermore, other environmental consequences of food production need to be considered. Even if consumers wanted to take these effects into account, they are hindered in doing so by lack of knowledge about the environmental consequences of their food purchasing decisions. This limits the social economic value of market systems.

The economic consequences as well as the ecological and biological impacts of a reduction in the size of the genetic stock and of changes in that stock are poorly understood. Even the existence of many varieties of traditional crops in Pacific Island countries is unknown or poorly known. This problem has been pointed out by the Government of PNG and also by that of Fiji (FAO, 2008; 2009). As a result, many varieties of traditional crops could be lost without the scientific community even knowing of their existence, let alone having knowledge of their attributes. Moreover, acute uncertainty exists about the attributes of the available crop varieties which will prove to be valuable in the future. For example, it is difficult to know what attributes of crop varieties may prove to be valuable in counteracting crop diseases or pests that could evolve in the future. Both the occurrence of future crop diseases and the attributes of crop varieties that may counteract their negative consequences are uncertain.

Now let us consider whether economics can provide any guidance on the possible benefits of conserving traditional crop varieties. What economic factors influence the extent of the economic loss suffered if, due to the occurrence of a disease (such as taro blight), the productivity of a favoured crop variety fails? In other words, what is the economic value of being able to avoid this loss by possibly making use of a genetic attribute of a traditional crop variety?

Figure 2 throws some light on the matter. It is assumed that the occurrence of this new disease adds to the cost of supplying the food crop, X. Whereas the original supply curve might have been as shown by line AS1, after the occurrence of the crop disease, it might shift upwards to BS2. If the demand for X is shown by D1D1, there is a considerable loss in consumers’ surplus as a result the occurrence of this disease. This loss is equivalent to the area of quadrilateral LE1E2M. On the other hand, the loss in consumers’ surplus will be smaller if the demand for X is more elastic. For example, the demand curve marked D2D2 exhibits greater elasticity at point E1 than does D1D1. In the latter case, the loss in consumers’ surplus caused by the onset of the pestilence is smaller by an amount equivalent to the dotted area. In general, the loss in consumers’ surplus tends to increase with the amount by which the cost of supplying commodity X rises once the pestilence occurs, and the more inelastic is
the demand for the commodity, other things being held constant. The latter implies that consumers lack close substitutes for the focal commodity.

Figure 2: Illustration of the adverse impact on the welfare of consumers of a new crop disease which fails to be controlled due to genetic erosion

However, there is another important influence on the loss in welfare of consumers that could result from genetic erosion in crops, and this could be more important than the elasticity of demand for a crop. It is the absolute level of demand for the crop. Other things being held constant, a loss of the type illustrated (consumers’ surplus) in Figure 2 is larger the higher is the absolute demand for the commodity produced by the crop. This can be seen from Figure 2. If, for example, the demand curve for X is as shown by line D3D3, the loss in consumers’ surplus as a result of the pestilence is equivalent to the area of quadrilateral RE4E5T. This area is much smaller than when the demand curve is located at D1D1 or D2D2. Consequently, the economic benefit from having a strategy to avoid a negative effect on productivity of the occurrence of a disease in a traditional crop increases with the level of the absolute demand for the food produced by that crop and the more inelastic is the demand for it. Crops which are considered to be staples (such as bananas and taro in the Pacific Islands) are likely to satisfy these conditions. This would suggest that they should have a high priority for the preservation of the diversity of their germplasm. This should, as discussed later, have an influence on conservation strategies.
There are fears that the continuing loss of existing varieties of crops will eventually result in unsustainable economic development and the impoverishment of humankind. The fact of the matter is that the global human population relies on a narrow spectrum of food crops for their sustenance and traditional varieties of these food crops continue to be lost. Thus, the genetic diversity of most food crops is narrowing with the passage of time. It is, therefore, possible that diseases may adversely affect the productivity of several species of crops within a limited time-span. Unfortunately, the genetic resources that might have permitted humans to address this problem may already be lost by the time this food crisis emerges, if it does happen. This is a legitimate concern.

The problem can be illustrated by Figure 3. As a result of improved crop varieties and technological progress in agriculture, development path ABCD might be followed. Incomes per head rise at first but eventually decline as the genetic diversity of crops is lost. On the other hand, if measures are adopted to conserve the genetic diversity of crops, a development path like ACE might be followed. This is a sustainable development path. Path ABCD results in distant generations being poorer than they need be. Eventually, they could be worse off than current generations and their incomes might even fall to subsistence level, a level indicated by line LM in Figure 3 (Tisdell, 2011).
Figure 3: Lack of conservation of genetic diversity of crops (for reasons given in Table 2) could result in the unsustainable development path ABCD whereas conservation of a greater diversity of crops might result in sustainable path ACE being followed.

Of course, a continuing reduction in the varieties of individual food crops does not necessarily result in development path ABCD being followed but it is a possibility that worries many scientists. If it is a possibility, what should be done about it? This depends on how much current generations care about future generations. If current generations are only concerned for the welfare basically of their children and grandchildren (as seems likely, see for example, Pearce, 1998, pp. 70-71), then an unsustainable economic development path may be chosen rather than a sustainable one. Consequently, there will be little public support for saving crop biodiversity, especially if this is costly to do. Moreover, this course of action is likely to be reinforced if (a) the likelihood of unsustainable economic development as a result of failing to conserve crop biodiversity is believed to be low or if (b) individuals are not inclined to believe that this is going to happen unless they see concrete empirical evidence of it occurring. But, if one waits for this evidence, then, by the time it is obtained, it may be too late to reverse the downward trend. Therefore, the possibility of this type of unsustainable development path poses a challenge for rational decision-making.
5. Methods of Conserving Varieties of Traditional Food Crops in the Pacific Islands and Economic Issues

A number of different techniques exist for conserving a wide range of varieties of crops. These broadly include the following:

1. **In situ.** Farmers can conserve traditional varieties themselves in their own fields, and the wild relatives of cultivated crops can be conserved in protected areas.

2. **Ex situ**\(^1\). There are two basic techniques for ex situ conservation:

 a. Cultivation on state experimental farms (for example, at Koronivia Research Station in Fiji) and in botanical gardens.

 b. **In vitro** conservation. This involves the preservation of seeds or tissues of plants. Types of in vitro conservation of germplasm vary. For example, cold storage with replanting of germplasm at various intervals to obtain new seeds or tissue is practiced in PNG. The Secretariat of the Pacific Community, has a conservation facility in Suva which involves deep-freezing of germplasm, cyro-preservation. This may reduce the frequency with which replanting is needed to sustain the germplasm.

All of these methods involve costs and none guarantee that the germplasm to be preserved will in fact be conserved. Farmers will not conserve traditional varieties unless this is the most economic choice from their point of view. They may have to be sufficiently subsidized if it is intended to conserve some varieties of crops in situ. Field cultivation ex situ also is not without problems. It usually depends on the maintenance of state funding and the ex situ fields where some varieties are grown may experience different environmental conditions to those in their place of origin and may not survive. Furthermore, cross-fertilization with other varieties may occur in ex situ fields where samples of the crop varieties are grown. In addition, costs usually result in a small population of each variety being planted in conservation fields. This increases the vulnerability of this population to environmental disasters.

In vitro conservation also involves biological, social and economic hurdles. There is a possibility that germplasm may lose its fertility in storage. In many cases, periodic replanting
and subsequent replacement is needed to keep germplasm viable. Consequently, similar problems also arise which occur in *ex situ* cultivation in fields. Most of the traditional food crops in the Pacific Islands reproduce vegetatively rather than by seed and this adds to the difficulties of its *in vitro* conservation. It is also possible for the equipment used in *in vitro* fertilization to fail.

According to Rao and Hodgkin (2002, p. 12), “Even under optimum conditions, accessions held [under] *ex situ* storage [*in vitro*] will need to be regenerated after a number of years. The genetic diversity of conserved material must be preserved during germplasm regeneration and this is more complex and difficult in the case of out-crossing species than inbreeders (Porceddu and Jenkins, 1982)”. However, the fact that many traditional Pacific Island crops reproduce vegetatively should reduce the outcrossing problem. On the other hand, storing their tissues *in vitro* is more challenging than storing seed of species which can be propagated from those seeds.

A further problem is that available funding (from governments and aid donors) for *ex situ* crop conservation projects may be slashed or may cease altogether after a gene bank is established. This can result in the abandonment of gene banks and the loss of the genetic diversity which was entrusted to them for conservation. Ragone (2006, Slide 30) reports that four of the seven Pacific breadfruit collections which were started in the Pacific Islands were abandoned by 2006. These were the collections in Kosrae (FSM), Pohnpei (FSM), Samoa and the Solomon Islands.

Although the conservation of crop diversity involves considerable costs, as far as I know, there have been no recent estimates of the cost of *ex situ* conservation in the Pacific Islands. The PNG Government, however, has stated:

> “Conservation and maintenance of these germplasm collections in field gene-banks are very expensive. A study undertaken by the PNG Department of Agriculture & Livestock (DAL) and the Agriculture Economics Department of the University of Sydney through funding from the Australian Centre for International Agriculture Research (ACIAR) in 1998 revealed that it was costing PNG around K183,000 annually to maintain four national germplasm collections of banana, sweet potato, cassava, aibika and taro in field gene-banks”. (FAO, 2009, p.16)

These estimates were made over 20 years ago. No up-to-date estimates for the cost of
conserving the genetic diversity of crops in the Pacific Islands as a whole appear to be available. Moreover, it seems that no cost-effectiveness analysis has been done. Given that a target is to conserve a particular quantity and mixture of genetic diversity, this type of analysis would consider the relative cost of achieving that goal by adopting alternative conservation methods. While this would be a difficult task, it ought to be attempted.

The economic benefit side of cost-benefit estimation is also difficult to assess. The economic analysis given in the previous section seems to provide some guidance. It suggests that priority should be given to conserving the genetic diversity of staple food crops. On the whole, it seems that this has happened in the Pacific Islands. Nevertheless, the past only provides a limited guide to the future. Crops which are in demand as staples for food supply may not continue in high demand in the future. Tastes do change. Furthermore, the possibility cannot be ignored that some local food crops that are little used now might become more important as a source of food supply in the future. The PNG Government points out that “There are no formal arrangements in place in collecting and conserving [these] under-utilized crop species” in PNG (FAO, 2009, p. 12). This also appears to be the case in other Pacific Island states and territories.

A further issue, which has economic implications, is how many gene banks should be established in the Pacific Islands and where. To what extent should the gene bank collections be centralized within countries and in the Pacific Islands as a whole? While centralization may reduce the cost of ex situ conservation, the biological effectiveness of it could be reduced. There is also the question of the extent to which ex situ conservation of germplasm should be duplicated at different sites. While duplication will add to the cost of conservation, it is likely to reduce the risk of germplasm being irretrievably lost due to unfortunate events.

Furthermore, another issue is the extent to which the crop germplasm of a country should be conserved in another country. Although in some cases, conservation of the germplasm of a less developed country in another country could be more effective in ensuring its conservation, many donor countries worry that they will lose control of the property rights in their germplasm. This can be a contentious political issue. Clearly, there are still many economic as well as other issues to be resolved in rationally determining the best strategies for conserving the germplasm for the wide range of varieties of crops which are present in the Pacific Islands.
6. Concluding Comments

The Pacific Islands (particularly Melanesia, especially New Guinea) are the ancient source of many important crops. Some (for example, bananas and taro) were already cultivated in the Pacific about 10,000 years ago. New Guinea has the distinction of being one of the first places on earth where agriculture began. Following the origins of agriculture in New Guinea, Pacific Islanders developed a huge variety of food crops over hundreds of years as they extended their settlement of the Pacific Islands. As a result, the Pacific Islands are a rich source of germplasm which can be utilized to sustain and improve food production. This stock of germplasm consists both of natural capital and heritage capital, but unfortunately, it is now diminishing following European contact and colonization of the Pacific Islands.

With greater economic globalization and the extension of market and monetary systems (as well as a result of advances in agricultural technology and science), loss in genetic diversity (as in other parts of the world) is continuing at a rapid rate. Some of the important socio-economic and related causes of this loss of genetic diversity in food crops in the Pacific Islands were identified. There is a risk that this continuing loss will eventually reduce human well-being and result in unsustainable economic development.

Economic circumstances were identified which would magnify the reduction in the economic welfare of consumers if genetic loss increases the cost of supplying food provided by traditional crops. The basic theory indicates that this loss is likely to be greatest for staple food crops, that is, those for which the absolute demand is large. This loss is also higher the more inelastic is the demand for such crops, but this is of secondary importance.

Determining whether or not loss of genetic diversity will lead to unsustainable economic development is very challenging. This is because past trends may not provide a satisfactory guide to the future. Once concrete empirical evidence emerges that unsustainable economic development is occurring, it can be too late to reverse the trend. Moreover, it is possible that, on the whole, the general public is not supportive of measures which help to ensure sustainable economic development in the very distant future – at most, each generation may only have an interest in the economic well-being of their children and grandchildren, and possibly their great grandchildren. Therefore, policies to ensure very long-term sustainable development are subject to serious political constraints. Decisions to conserve the germplasm of crops are limited by this attitude and by the fact that the (possible) negative economic
consequences of the loss of crop germplasm often occur slowly, and are not very visible to the public.

The economic estimation of the social benefits of conserving crop variety is not well developed, and this limitation is compounded by the fact that scientific knowledge is lacking about the attributes of some crop varieties, and whether these traits will prove to be important for production (and consumption) purposes in the future. It has been pointed out above that in the Pacific Islands (1) not all crop varieties are known, let alone their attributes, and (2) it is not exactly known what types of available germplasm will be needed (and be effective) in counteracting new crop diseases or pests which might arise in the future, or meeting the challenges of climate change.

These difficulties are compounded by the fact that there is a paucity of economic analysis of alternative strategies to conserve crop biodiversity. Little analysis has been done of the cost of conserving the biodiversity of food crops in the Pacific and virtually no cost-effectiveness analysis has been attempted. This paper has identified several of the cost-effectiveness issues which need consideration.

It seems that policies to conserve the germplasm of food crops in the Pacific have focused on staple food crops. Although the focus appears to be appropriate on the basis of the economic theory outlined here, this preference also needs to be scrutinized. This is because food crops which are staples now may not always remain so. Minor indigenous food crops may prove to be in considerable demand in the future and so efforts to conserve their germplasm may prove to be economically valuable especially when the precautionary principle is taken into account (see, for example, Tisdell, 2010). Determining the economic value of conserving crop diversity is, therefore, a continuing but important challenge.

7. Notes

1. The Commission on Genetic Resources for Food and Agriculture (2010, p.58) in the Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture states there were (at the time this report was prepared) 2,500 botanic gardens worldwide holding 80,000 plant species and 1,750 individual gene banks globally storing 7.4 million accessions of which 25-30 per cent (1.9 – 2.2 million) are distinct, that is not duplicates. It also points out that gene bank holdings are being increasingly concentrated.
in fewer countries.

2. It is disappointing to find that the Commission on Genetic Resources for Food and Agriculture (2010) gives no attention to the economics of conserving plant genetic resources and procedures for doing this, for instance, in gene banks.

8. References

Fssheets%2FEnvironment.pdf&ei=ocswU56UCliifkAWr3YHwBQ&usg=AFQjC
MSYNGJU5O2hs8jWi85p0o-Fdw&sig2=W2000eZyj6emp2AS2ywYVg&bvm=bv.63587204,d.dGI [Accessed 25 March, 2014].

Fullagar, R., J. Field, T.P. Denham and C. Lentfer (2006), 'Early and mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp) and other plants at the Kuk Swamp in the highlands of Papua New Guinea', Journal of Archaeological Science, 33, 595-614.

Library of the University of Hawaii at Manoa (2012a), 'Coconut (Cocos nucifera)', Manoa: Traditional Pacific Island Crops. Available at

Library of the University of Hawaii at Manoa (2012b), 'Sweet Potato (Ipomoea batatas)', Manoa: Traditional Pacific Island Crops. Available at

EpFGtVZqRjwnNd1VKD7pWTP_laLvA&sig2=g16gBC495n5j_JGuTOuczW&bvm=bf.62788935,d.dGI. [Accessed 11 March 2014].

PREVIOUS WORKING PAPERS IN THE SERIES

ECONOMICS, ECOLOGY AND ENVIRONMENT

For a list of working papers 1-100 in this series, visit the following website: http://www.uq.edu.au/economics/PDF/staff/Clem_Tisdell_WorkingPapers.pdf or see lists in papers 101 on.

Elephants and Polity in Ancient India as Exemplified by Kautilya’s *Arthasastra* (Science of Polity) by Clem Tisdell, March 2005.

Sustainable Agriculture by Clem Tisdell, April 2005.

Knowledge about a Species’ Conservation Status and Funding for its Preservation: Analysis by Clem Tisdell, June 2005.

Public Valuation of and Attitudes towards the Conservation and Use of the Hawksbill Turtle: An Australian Case Study by Clem Tisdell, Hemanath Swarna Nantha and Clevo Wilson, June 2005.

Comparison of Funding and Demand for the Conservation of the Charismatic Koala with those for the Critically Endangered Wombat *Lasiorhinus krefftii* by Clem Tisdell and Hemanath Swarna Nantha, June 2005.

Management, Conservation and Farming of Saltwater Crocodiles: An Australian Case Study of Sustainable Commercial Use by Clem Tisdell and Hemanath Swarna Nantha, August 2005.

Knowledge about a Species’ Conservation Status and Funding for its Preservation: Analysis by Clem Tisdell, August 2005.

Poverty, Political Failure and the Use of Open Access Resources in Developing Countries by Clem Tisdell, November 2006.

Global Property Rights in Genetic Resources: An Economic Assessment by Clem Tisdell, November 2006.

Notes on the Economics of Fish Biodiversity: Linkages between Aquaculture and Fisheries by Clem Tisdell, November 2006.

Conservation of the Proboscis Monkey and the Orangutan in Borneo: Comparative Issues and Economic Considerations by Clem Tisdell and Hemanath Swarna Nantha, March 2007.

Economics of Pearl Oyster Culture by Clem Tisdell and Bernard Poirine, July 2007.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>149.</td>
<td>Wildlife Conservation and the Value of New Zealand’s Otago Peninsula: Economic Impacts and Other Considerations by Clem Tisdell, June 2008.</td>
<td></td>
</tr>
<tr>
<td>152.</td>
<td>The Orangutan-Oil Palm Conflict: Economic Constraints and Opportunities for Conservation by Hemanath Swarna Nantha and Clem Tisdell, October 2008.</td>
<td></td>
</tr>
<tr>
<td>155.</td>
<td>Notes on Biodiversity Conservation, The Rate of Interest and Discounting by Clem Tisdell, April, 2009.</td>
<td></td>
</tr>
<tr>
<td>166.</td>
<td>The Influence of Public Attitudes on Policies for Conserving Reptiles by Clem Tisdell, July 2010.</td>
<td></td>
</tr>
<tr>
<td>168.</td>
<td>The Survival of a Forest-Dependent Species and the Economics of Intensity of Logging: A Note by Clem Tisdell, August 2010.</td>
<td></td>
</tr>
<tr>
<td>173.</td>
<td>Antarctic tourism: Environmental concerns and the importance of Antarctica’s natural attractions for tourists by Clem Tisdell, October 2010.</td>
<td></td>
</tr>
</tbody>
</table>
174. Sustainable Development and Intergenerational Equity: Issues Relevant to India and Globally by Clem Tisdell, November 2010
175. Selective Logging and the Economics of Conserving Forest Wildlife Species e.g. Orangutans by Clem Tisdell, September 2011.
177. Economics of Controlling Vertebrate Wildlife: The Pest-Asset Dichotomy and Environmental Conflict by Clem Tisdell, September 2011
189. Managing Ecosystem Services for Human Benefit: Economic and Environmental Policy Challenges by Clem Tisdell and Dayuan Xue, April 2013.
190. Nature-based Tourism in Developing Countries: Issues and Case Studies by Clem Tisdell. May 2013
191. Three Questionnaires Used in Evaluating the Economics of Conserving Australia’s Tropical Wildlife Species and the Procedures Adopted by Clem Tisdell and Clevo Wilson, January 2014.
194. The Opportunity Cost of Engaging in Reduced-Impact Logging to Conserve the Orangutan: A Case Study of the Management of Deramakot Forest Reserve, Sabah, Malaysia by Hemanath Swarna Nantha, April 2014.