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Minimal conditions for parametric continuity
of a utility representation∗

Patrick O’Callaghan†

Abstract

When sufficiently small perturbations of parameters preserve strict
preference for one alternative over another, dependence on the param-
eters is continuous. We characterise this property with a utility func-
tion over alternatives that depends continuously on the parameter.
The class of parameter spaces such that this form of representation
is guaranteed to exist is also characterised. When the parameters
are beliefs, these results have implications for robust portfolio choice,
Bayesian games and psychological games. When alternatives are dis-
crete, the representation is jointly continuous, and an extension of
Berge’s theorem of the maximum, yields a continuous value function.
We apply this result to generalise a standard consumer choice prob-
lem: where parameters are price-wealth vectors. When the parameter
space is lexicographically ordered, a novel application to reference-
dependent preferences is possible.

1 Introduction

It is often natural to assume that strict preference for one alternative over
another is preserved when a parameter upon which preferences depend is
perturbed. We refer to this property as continuous parameter dependence
of preferences. The following quote provides the behavioural motivation for
this assumption.
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Kline, Andrew McLennan, Aliandra Nasif, John Quiggin and Maxwell Stinchcombe for
their useful feedback. Some of the present results appeared in my Ph.D dissertation.
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When processing sensory input, it is of vital importance for the
neural systems to be able to discriminate a novel stimulus from
the background of redundant, unimportant signals.

(Mejias et al., 2012)

In other words, in the absence of robust preference, errors would compound,
and we would be unable to perform many of our day-to-day activities. A
similar point is made by Rolls and Deco (2010), and these views may be
traced back to von Neumann (1976).

In this paper, continuous parameter dependence is captured through a
condition or axiom on preferences that vary across a parameter space. Es-
sential to the one-shot decision framework we have in mind, is the assumption
that the decision maker’s preferences are a ranking of the alternatives given
each parameter. Beyond this, the intended meaning of the term “parameter”
in this paper is broad as possible and this is reflected in the applications and
examples we provide following the exposition of the model and results.

In the main theorem of this paper, we identify minimal conditions such
that continuous parameter dependence is characterised by utility representa-
tion that is continuous in the parameter. The sense in which the conditions
are minimal are as follows. First, the axioms on preferences are necessary
and sufficient for the representation. Second, when the parameter space fails
to satisfy the conditions of this theorem, there always exist preferences with
no continuous representation even though they vary continuously with the
parameter.

The concept of parametric continuity demands conditions on the nature
of the open sets of the parameter space. That is, conditions that are topolog-
ical in nature. In this paper we show that in order to guarantee the existence
of a utility representation of preferences that is continuous in the parameter,
the minimal requirement is that the parameter space is both perfect and nor-
mal. Respectively, this means that every closed set (this includes singletons)
is equal to the intersection of a countable collection of open sets; and every
disjoint pair of closed sets can be separated by a disjoint pair of open sets.
The requirement that the space is normal is obviously relevant for perturba-
tions, however the key to parametric continuity of the representation is that
the space is also perfect. The class of perfectly normal spaces includes, but
is not limited to, spaces that are metrizable. To our knowledge, there are no
other utility representation theorems for a parameter space that is perfectly
normal.

Throughout, we assume that the set of alternatives is countable and inde-
pendent of the parameter space. Thus, no topological assumptions regarding
the alternatives are necessary for our main theorem. However, when the set
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of alternatives is discrete (so that every element is isolated), our conditions
are also necessary and sufficient for the representation to be jointly contin-
uous on pairs of alternatives and parameters. This ensures that, for the
discrete case, our representation generalises existing results from the existing
literature (Caterino, Ceppitelli, and Maccarino, 2009; Levin, 1983) on jointly
continuous utility which provide only sufficient conditions for such a repre-
sentation of preferences. The survey of this literature appears in subsection
3.2.

Joint continuity is useful for deriving a continuous value function (e.g. a
continuous indirect utility function in consumer theory). In particular it is a
premise of Berge’s theorem of the maximum which provides sufficient condi-
tions for such a value function to exist. The other premise for Berge’s theorem
is that the feasible set of alternatives the decision maker faces varies contin-
uously with the parameter. Indeed, in the standard consumer choice setting,
the budget correspondence is continuous. When the set of alternatives is
discrete, this latter requirement is too strong. It implies that the feasible
set of alternatives is constant across the parameter space. For the case of a
discete set of alternatives, we extend Berge’s theorem so that the constraint
set only varies upper hemicontinuously. The result is a value function that
is continuous and a choice correspondence that is upper hemicontinuous (on
a perfectly normal parameter space). To our knowledge, this result is novel
and related to the literature on envelope theorems with discrete alternatives
(Milgrom and Segal, 2002; Sah and Zhao, 1998).

Our first application builds on this latter result. In subsection 4.1, we
consider a standard consumer choice setting, where alternatives are com-
modities and the parameter space is the product of price-wealth pairs with
a further space of parameters. We introduce the latter augmentation with a
view to demonstrating the potential for applications with a general specifica-
tion of experimental frames, reference points, unawareness, beliefs and types.
In such settings our results demonstrate that it is not necessary to require
the parameter space is metrizable, but if it is, then parametric continuity is
guaranteed.

When the parameter space consists of beliefs (probability measures) on a
state space, the topology on the set states is also important for parametric
continuity of the utility and corresponding value function. This is particularly
true when the set of states is infinite. In particular for a compact set of
states: the set of states is metrizable if and only if the set of beliefs are
metrizable; but when the set of states is compact, but not perfectly normal,
the set of beliefs also fails to be perfectly normal. This implies that even
when preferences depend continuously on beliefs, the corresponding utility
and value functions may be discontinuous.
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In our second application, we use this latter result in combination with
our main results to highlight some immediate implications for topologies
on types (Dekel, Fudenberg, and Morris, 2006; Mertens and Zamir, 1985),
psychological games (Geanakoplos, Pearce, and Stacchetti, 1989) and utility
maximisation in the context of a game (Gilboa and Schmeidler, 2003). A
brief discussion of these implications is provided in subsection 4.2.

Our third application is to belief dependence, where the parameter space
is a set of probability measures on a set of states. The canonical example
takes each state to be a path across time that represents portfolio value. In
this setting, it is common practice for investment advisors to present their
clients with perturbed paths, so as to check that their portfolio choice is
robust. We confirm that, provided the set of paths is metrizable, this is
tantamount to perturbing beliefs, and moreover perturbing the utility repre-
sentation is equivalent to perturbing strict preference. However, once again,
when the set of states is not perfectly normal, the set of beliefs is not per-
fectly normal, and parametric perturbations of the utility or value function
may be misleading. To demonstate how easily this might arise, we outline
two approaches to constructing the same measure that governs a Brownian
motion. The first yields a metrizable space of beliefs whereas the second
yields one that is not perfectly normal. This highlights a subtle issue that
may often go unnoticed in model specifications.

Our fourth and final application is a simple, two alternative choice prob-
lem. Here, the parameters are reference points. The innovation is to allow for
a lexicographic ordering of reference points. This yields an example that is
uniquely suited to the present model, for there are lexicographically ordered
sets that are perfectly normal, but not metrizable.

The next section introduces the model along with preliminary observa-
tions. The main theorem and related results appear in section 3. Following
this, the applications are presented in section 4. Following the summary in
section 5, the proof of the main theorem is presented in appendix A1. All
remaining proofs appear in appendix A2.

2 Model

In this section we first present the basic model of preferences that depend
on a parameter regardless of issues relating to continuity. We then define
continuous parameter dependence and describe basic topological conditions
on the parameter space. Following this, more specific conditions on the
parameter space are defined and explored using examples.
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2.1 Preferences indexed by a general set of parameters

Let A denote a nonempty set of alternatives. Let X denote a nonempty set.
We refer to an element of X as a parameter. Motivated by our interest in
robust strict preference, we take statements of strict preference as primitive.
For each x in X, a ăx b denotes the statement “at x, alternative b is strictly
preferred to alternative a”. For each x in X, ăx is the binary relation A that
summarises all such preference statements. As such ăx is a subset of AˆA,
and is referred to as preferences at x or given x. For alternatives a and b
such that neither a ăx b, nor b ăx a, we write a „x b.

The shorthand tăxux PX denotes the collection “ăx such that x belongs
to X”, and is the primitive object we refer to as preferences. Preferences
are parameter-free whenever X is a singleton, otherwise, they are parameter-
dependent. Thus, we do not require that each x determines a unique ăx.
Indeed, typically, the mapping x ÞÑăx is many-to-one. The term parameter
dependence will be used without reference to preferences when no possible
confusion might arise. Similarly, we henceforth refer to “the decision maker”
as Val.

Representing parameter dependence By a representation of prefer-
ences, we mean a function of the form U : A ˆX Ñ R such that, for every
x in X, and every a, b P A, a ăx b if and only if Upa, xq ă Upb, xq. That
is, for each x in X, there exists a utility function u “ Up¨, xq : A Ñ R that
represents preferences at x in the usual sense. By the properties of ă on R,
it is straightforward to show that if preferences have a representation, then
they satisfy the following two conditions.

Axiom Asy. If a, b P A, then, for every x P X, a ăx b implies not b ăx a .

Axiom NT. If a, b, c P A, then, for every x P X, a ăx b implies c ăx b or
a ăx c.

In turn, when A is countable, asymmetry (Asy) and negative transitivity
(NT) are standard sufficient conditions for the existence of a utility function
at each x P X. That is, sufficient for a representation of tăxux PX in this case.
With minor modifications, this result is due to Cantor (1895). More generally,
(Asy) and (NT) are equivalent to assuming the weak preference relation
Àx“ăx Y „x is complete and transitive for every x P X.1 With a view
to finding the weakest conditions for parametric continuity, we henceforth
assume that A is countable unless otherwise stated.

1Recall that Àx is complete if, for all a, b and c in A, a Àx b or b Àx a and Àx is
transitive if a Àx b Àx c implies a Àx c. See Fishburn (1979) for more on the relationships
between these and other conditions.
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2.2 Continuous parameter dependence

If preferences are such that, for each a, b P A such that a ăx b, there exists
an “open neighbourhood” N of x in X such that a ăy b for every other y
in N , then we say that parameter dependence is continuous at x. Note that
whenever ăx“ H, this condition says nothing about preferences. The notion
of an open set of X is only well-defined once a topology on X is identified.

The topology on X provides a constraint on the perturbations that are
allowed. Recall that a topology on X is any collection τ of subsets G of X
such that τ is closed under finite intersections and arbitrary unions. Usually
we will suppress reference to τ and simply call X a topological space. Thus,
by “G is open” we mean G P τ and by “F is closed” we mean that for some
G P τ , F is equal to the complement X ´G of G.

Recall that a neighbourhood of x is some subset N Ď X such that x P N
and G Ď N for some open set G. We will maintain the assumption that,
for each x P X, the singleton set txu is equal to the intersection of all
closed neighbourhoods of x. This is equivalent to the assumption that X
is a Hausdorff space: every distinct pair x, y P X gives rise to a disjoint pair
of open neighbourhoods Nx and Ny of x and y respectively.

Suppose that for some y P X, parameter dependence is discontinuous
at y. Then, for some a, b P A satisfying a ăy b we have: for every open
neighbourhood N of y, there exists x P N such that b Àx a. (This follows
directly from the definition of ăx and „x.) Thus, discontinuous parameter
dependence for some y P X is equivalent to the set tx : a ăx bu failing to be
open for some a, b P A. On the other hand, when parameter dependence is
continuous at x for every x P X, we have

Axiom CD. For every a, b P A, the set tx : a ăx bu is open in X .

This axiom appears in Gilboa and Schmeidler (1997, 2003). Indeed the
authors also assume completeness and transitivity of weak preference at each
x. Whilst we identify minimal conditions for parametric continuity of the
representation, Gilboa and Schmeidler (1997, 2003) impose further axioms
and obtain a representation that is linear in the parameter.

When A is discrete (every subset is both open and closed), (CD) is equiv-
alent to assuming that the correspondence x ÞÑăx is lower hemicontinuous
(l.h.c.). (This means that, for every open G Ď AˆA the set tx : ăxXG ‰ Hu
is open.) For example, because A is discrete, G “ tpa, bqu is open and
tx : ăxXG ‰ Hu “ tx : a ăx bu.

Characterising continuous parameter dependence For any function
U : AˆX Ñ R, we will say that U is continuous at x whenever the function
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Upa, ¨q : X Ñ R is continuous at x for every a P A.

Lemma 2.1. Let U : AˆX Ñ R be a representation of preferences tăxuxPX .
If U is continuous at x, then parameter dependence is continuous at x.

Proof of lemma 2.1. Let G be the set of points x P X such that parameter
dependence is continuous at x, and let H be the set of points x P X such
that U is continuous at x. We will show that H Ď G. Suppose parameter
dependence is discontinuous at x (so that x P X´G). Then, for some a, b P A
satisfying a ăx b: every open neighbourhood N of x, there exists y P N
such that b Àx a. Consider the collection tNνuνPD of all neighbourhoods
of x partially ordered by the inclusion (subset) relation Ď. Then we may
take D to be a directed set that generates a net pyνqνPD. This net is such
that: b Àyν a for every ν P D; and it converges to x. (This latter fact
follows from our assumption that X is a Hausdorff set.) Now since U is
a representation, this means that Upa, xq ´ Upb, xq ă 0 and for every ν,
Upa, yνq ´ Upb, yνq ď 0. Then zero is an upper bound for the latter set of
points. Thus U is discontinuous at x, and so x P X ´H.

When U is continuous at x for every x P X, we say U is continuous in the
parameter or that it satisfies parametric continuity. Lemma 2.1 immediately
implies that if the representation U satisfies parametric continuity, then (CD)
holds. The following statement is significantly weaker than the converse of
lemma 2.1, yet, even for two alternatives, it requires further conditions on
the parameter space.

Let (Asy), (NT) and (CD) hold. Then there exists a representa-
tion that is continuous in the parameter.

If this statement holds, then U characterises continuous parameter depen-
dence. Our purpose for the remainder of this section is to define and explore
the minimal conditions on the parameter space such that it does.

2.3 Perfectly normal parameter spaces

A (topological) space X is perfectly normal if it is both normal and perfect.
A space X is normal, if every pair of closed sets E,F can be separated.
That is, there exist open sets G and H in X such that E Ď G and F Ď H
and, moreover, G XH is empty. A space is perfect if every closed set is the
intersection of countably many open sets in X.

The following example shows precisely how this property is used to con-
struct a utility representation for the case where there are just two alter-
natives. The main theorem extends this to the countable case using an

7



equivalent definition of perfect normality (Michael’s selection theorem) that
we present below.

Example 2.1. Let A “ ta, bu, and suppose that Yab denotes the nonempty,
open set tx : a ăx bu. If Val’s preferences satisfy (CD), then the set Yab is
open and X ´Yab is closed. Similarly, the set Yba “ tx : b ăx au is then open
and we suppose it is nonempty. If Val’s preferences also satisfy (Asy), then
Yab and Yba are disjoint. Recall that if two sets are open and disjoint, then
they are separated sets. That is, neither contains a limit point of the other.

If X is perfect, the fact that X ´ Yba is closed implies that there exists
a countable collection tGnunPN of open sets satisfying

Ş8

1 Gn “ X ´ Yba.
If X is also normal, then the Urysohn lemma applies because X ´ Yba and
X´Gn are closed and disjoint. This guarantees the existence of a real-valued
continuous function fn on X such that fnpxq “ 0 on X ´ Yba and fnpxq “ 1
on X ´ Gn, and 0 ď fnpxq ď 1 otherwise. Now let f “

ř8

1 2´nfn. As
the uniform limit of continuous functions is continuous, f is a continuous,
nonnegative function. Moreover, for every x P X ´ Yba, since fnpxq “ 0 for
each n, fpxq “ 0. For every other x, there exists n such that x P X ´Gn, so
that fpxq ą 0.

By the same argument, there exists another continuous nonnegative func-
tion g such that g´1p0q “ X ´ Yab. Now let Upa, ¨q ” 0 and let

Upb, xq “

$

&

%

fpxq if x P Yab,
´gpxq if x P Yba,
0 otherwise.

The resulting function U : A ˆ X Ñ R is a utility representation at each x
and, moreover, it is continuous in the parameter. As such, it characterises
the continuous parameter dependence of Val’s preferences.

There are a number of other, equivalent definitions for perfect normality
of a space. For the first, we introduce the concept of a zero set. F Ď X is a
zero set provided that f´1p0q “ F for some continuous function f : X Ñ R.
Recall that, since t0u is closed in R, for any continuous f : X Ñ R, the set
F “ f´1p0q is closed in S. That is, the zero sets are always closed. The
converse is only true when X is perfectly normal.

Definition. X is perfectly normal if and only if every closed subset of X is
a zero set.

A third, equivalent definition of perfect normality is provided by the fol-
lowing restatement of Michael’s selection theorem (Michael, 1956, Theorem
3.13).
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Theorem (Good and Stares (2000)). X is perfectly normal if and only if
whenever g, h : X Ñ R are upper and lower semi-continuous respectively and
g ď h, then there is a continuous f : X Ñ R such that g ď f ď h and
gpxq ă fpxq ă hpxq whenever gpxq ă hpxq .

Examples of perfectly normal spaces It is not hard to see that a metriz-
able space is perfectly normal, for instance, in example 2.1, we can take the
sets Gn to be explicit ε-neighbourhoods of the closed sets that we seek to
separate. Indeed, by considering the usual metric |¨| on the nonnegative real
numbers R`, the latter is metrizable and hence perfectly normal.

An example of a set that is perfectly normal, compact, but not metrizable
is developed in the context of an application to reference dependence in
subsection 4.4. This is the product r0, 1s ˆlex t0, 1u of the unit interval r0, 1s
with the two-element, discrete set t0, 1u with topology generated by the
lexicographic order (where the first dimension is dominant). It is sometimes
referred to the split interval.

The split interval is important, because all compact, separable ordered
spaces are order isomorphic to one of its subsets (Ostaszewski, 1974). An-
other space that is homeomorphic to the split interval is the set F of increasing
functions on r0, 1s with values in t0, 1u with the topology of pointwise con-
vergence (Vaughan, 1971).2,3 As a result, the latter is compact and perfectly
normal, but not metrizable. As we show in the sequel, these examples of 4.4
serve to distinguish the present model from its complement.

What if the space fails to be perfectly normal? Whilst axiom (CD) is
often well motivated in applications, it is natural to question the importance
of representing continuous parameter dependence. That is to say: what if
preferences satisfy (Asy), (NT) and (CD), but there is no representation
that is continuous in the parameter? The following two alternative example
shows, the discontinuities that are essential (present in all representations)
are on the boundary of tx : a ăx bu, where preferences switch from strict
preference for b over a to indifference. This is precisely where the continuity
property of the representation is most useful.

Example 2.2. Let A “ ta, bu and suppose Val’s preferences tăxuxPX satisfy
(Asy), (CD), and that F “ tx : a „x bu for some closed set F Ĺ X. Suppose
that F is not a zero set. That is, there is no continuous, real-valued g on X

2Recall that two sets are homeomorphic whenever there is a continuous bijection with
continuous inverse between them.

3In this case, the topology of pointwise convergence is the collection of all unions of
finite intersections of sets W px,Gq “ tf P F : fprq P Gu, where r P r0, 1s and G Ď t0, 1u.
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such that g´1p0q “ F . (See 4.4 for an explicit example of such a set.) Since
preferences satisfy (Asy), there exists a representation of preferences. Let
U : A ˆX Ñ R be any such representation. Let f “ Upa, ¨q ´ Upb, ¨q. Then
since U is a representation, f´1p0q “ F . This implies that Upa, ¨q´Upb, ¨q is
discontinuous. Then since the sum of two continuous functions is continuous,
at least one of Upa, ¨q and Upb, ¨q is discontinuous.

Suppose f is discontinuous at x and fpxq ą 0. By the definition of f and
(CD), there exists an open neighbourhood N of x such that, fpyq ą 0 for every
y P N . Now X ´ N is closed and separated from txu which is also closed.
By the same argument as in example 2.1, there exists a continuous function
λ : X Ñ r0, 1s satisfying λ´1p0q “ X ´ N and λ´1p1q “ txu. Continuity of
λ is sufficient for f 1 “ p1´ λqf ` λ to be continuous at x. In turn, f 1 gives
rise to a new representation U 1 that is also continuous at x.

The preceding paragraph demonstrates that any discontinuity of U that
lies outside F can be removed. This, together with the fact that Upa, xq ´
Upb, xq “ 0 for every x P F , implies that the discontinuities of U that cannot
be removed lie on the boundary of F . This implies that, for some x P F , every
representation U : X Ñ R has the property that there exists pxνq converging
to x such that Upa, xνq´Upb, xνq does not converge to 0 “ Upa, xq´Upb, xq.

The issues that arises when, as in example 2.2, the representation is dis-
continuous and preferences satisfy (CD), are as follows. First, a compara-
tive statics exercise is difficult, for the modeller cannot rely on closeness to
the boundary of tx : a ăx bu being associated with eventual closeness of
Upa, ¨q ´ Upb, ¨q to zero. (Limits can no longer be relied upon for derivatives
for instance.) The second arises in computational settings, where the utility
function is used in the place of preferences and the modeller needs to approx-
imate the underlying parameter space. The approximation is more costly if
false conclusions such as a ăx b for some x P F are to be avoided. This
situation does not arise when the space is perfectly normal.

Counterexamples of perfectly normal spaces There are many kinds
of parameter space that fail to be perfectly normal. These are useful in
delineating the scope of the main theorem of this paper. Some of these, like
the lexicographic unit square r0, 1sˆlex r0, 1s, are discussed in subsection 4.4.
Others relate to the product topology and often arise in the setting where
the parameter space consists of beliefs (probability measures) and appear
in subsections 4.2 and 4.3.4 For a simple example where perfect normality

4Recall that for topological space X and Y , the product topology is the smallest
topology such that, for any G open in X and H open in Y , the set G ˆ H is open in
X ˆ Y .
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fails, consider the product topology on the set t0, 1uS of functions on an
arbitrary uncountable set S with values in t0, 1u. Elements of this set might
be interpreted as an uncountable “sequence” of coin tosses.

Following Savage (1972), another interpretation given to a function f P
t0, 1uS is that of an act. In a one-person decision problem considered by
Savage, Val’s preferences are defined on t0, 1uS, so that this would correspond
to our set A. In a two person setting where the second player also chooses
from the same set of acts, a complete, contingent plan for Val would involve
defining preferences on A for each of her opponent’s strategies f P t0, 1uS.
That is, we also have X “ t0, 1uS. Example 2.2 highlights that, with the
product topology on X, Val’s preferences may be such that they are not
represented by any function that is continuous on X. Depending on the
context, there may be ways to fix this problem. For example, one might
instead consider the topology generated by the uniform metric ‖x ´ y‖8 “
supt|xpsq ´ ypsq| : s P Su on X. Note however, that although X is then
metrizable (and therefore perfectly normal), it is also discrete (every x P X
is a neighbourhood of itself). This may not be suitable for applications where
a more subtle notion of “closeness” is useful.

Perfectly normal spaces of beliefs In some of the applications that
appear in section 4, we will let the parameter space be a set of probability
distributions on a state space S. For this purpose, we need the following par-
tial extension of Parthasarathy (1967, Theorem 6.4). The relevant definitions
appear in remark 2.1 below.

Proposition 2.1. Let S be a compact set of states. Let Σ be the smallest σ-
algebra containing all the zero sets of S, and let ∆pSq be the set of probability
measures on Σ endowed with the weak˚ topology.

1. ∆pSq is metrizable if and only if S is metrizable.

2. If ∆pSq is perfectly normal, then so is S.

The proof of part 2 of proposition 2.1 appears in appendix A2. With
minor modifications, part 1 follows from Parthasarathy (ibid., Theorem 6.4)
and the connection between the Baire σ-algebra and the Borel σ-algebra that
we describe below. Missing from the above result is the converse implica-
tion: S perfectly normal implies ∆pSq perfectly normal. Nonetheless, for
our present purposes, an important fact that proposition 2.1 reveals is the
following:

if S not perfectly normal, then neither is ∆pSq.
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When S is compact, Σ of proposition 2.1 is usually referred to as the Baire
σ-algebra (the Baire sets). Note that it is more common to let Σ be the
smallest σ-algebra that contains every closed set of S (the Borel sets). But
recall that when S is perfectly normal, every closed subset is a zero set. Thus,
when S is compact and perfectly normal, the Borel sets coincide with the
Baire sets.

In contrast, when S is not perfectly normal, there exists some closed
subset F of S that is not a zero set. In this case, although every Baire set is
a Borel set, the converse does not hold. This is precisely when proposition
2.1 matters, for then the set of beliefs ∆pSq is not perfectly normal.

Remark 2.1. When S is finite, Σ is usually the collection of all subsets of
S (the discrete topology on S) and ∆pSq is then identified with the simplex
in RS with the usual product topology. When the set of states is infinite,
it is common to require that the set of states S is measurable and endowed
with a σ-algebra Σ of subsets. (Σ can be any collection of subsets that is
closed under complementation, countable intersection and countable union.)
When considering the set of probability measures ∆pSq on S, it is common
to consider the weak˚ topology on ∆pSq. The weak˚ topology is defined as
follows. Let CpSq be the set of real-valued, continuous functions on S. Let
Σ be a σ-algebra on S. The weak˚ topology on the set of countably additive
probability measures ∆pSq on pS,Σq is the smallest topology on ∆pSq such
that, for each f P CpSq, the linear functional µ ÞÑ

ş

S
f dµ is continuous on

∆pSq.

3 Results

In this section we characterise the axioms on preferences of the preceding
section through a function that is both a utility at each parameter and con-
tinuous across parameters. We also provide a characterisation of a perfectly
normal parameter space as a corollary to the main theorem. Connections
with results from the literature on jointly continuous representations are
made in subsection 3.2. For the case where A is discrete, the representation
is shown to be jointly continuous. In subsection 3.3 we build on this result to
derive a value function that is continuous in the parameter. This is done via
an extension of Berge’s theorem of the maximum, which also yields a choice
function that is upper hemicontinuous in the parameter.
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3.1 Main theorem

The following result is equivalent to the classic representation of a single
binary relation by Cantor (1895) in the case that X is a singleton.5

Theorem 3.1. For A countable and X perfectly normal, (Asy), (NT) and
(CD) hold if and only if there exists U : AˆX Ñ R such that

1. for every x in X, Up¨, xq is a utility representation of ăx on A; and

2. for every a in A, Upa, ¨q is a continuous function on X.

The proof of theorem 3.1 appears in appendix A1.
The requirement that X is perfectly normal is essential for the sufficiency

of the axioms in theorem 3.1. If X is not a perfectly normal space, there are
(possibly many) preferences that satisfy continuous parameter dependence,
but have no representation that is continuous in the parameter. The following
corollary formalises this statement and its converse.

Corollary 3.1. X is a perfectly normal if and only if all preferences on a
countable set A satisfying (Asy), (NT) and (CD) have a representation that
is continuous in the parameter.

Proof of corollary 3.1. If X is perfectly normal, then theorem 3.1 com-
pletes the sufficiency argument. With minor modifications, the converse
follows from the first paragraph of example 2.2.

3.2 Joint continuity for discrete alternatives

It is often useful to require that the representation of preferences is jointly
continuous on AˆX. Examples include consumer demand theory (see sub-
section 4.1), game theory and Kőszegy and Rabin (2006)’s formalisation of
prospect theory. The literature on jointly continuous representations of pref-
erences tăxux PX includes Kannai (1970), Hildenbrand (1970) and Mas-Colell
(1977), Levin (1983) and, more recently, Caterino, Ceppitelli, and Maccarino
(2009). For an introductory survey see Mehta (1998). Levin (1983, Theorem
1) provides the simplest and most easily comparable continuity condition for
a jointly continuous representation. Instead of (CD), Levin assumes

Axiom JC. The set tpx, a, bq : a Àx bu is closed in X ˆ Aˆ A.

5In fact, Cantor’s theorem holds for the case where indifference sets are singletons.
This latter distinction is minor when „x is an equivalence relation, for Cantor’s theorem
then applies to the quotient set A{„x

.
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Levin’s theorem also requires that X is metrizable and A is a countable
union of compact sets. Note that the set tpx, a, bq : a Àx bu of (JC) is the
graph of x ÞÑÀx. This graph is closed if and only if the correspondence
x ÞÑÀx is upper hemicontinuous and closed-valued. The latter holds when
Àx is closed in A ˆ A for each x P X.6 Upper hemicontinuity (u.h.c.) holds
if, for every closed F Ď AˆA, the set tx : ÀxXF ‰ Hu is closed in X. If we
let F “ tau ˆB, for some closed and infinite set B, then (JC) requires that

G :“ tx : Àx Xptau ˆBq ‰ Hu “
ď

b PB

tx : a Àx bu

is closed in X. Closedness of tx : a Àx bu for every a, b P A is equivalent to
(CD). However, (CD) does not imply the above infinite union is closed.

Example 3.1. Let X “ R, B “ tb1, b2, . . . u, and tx : a Àx bnu “ r´
n
n`1

, n
n`1
s

for each n. Then the open set G “ p´1, 1q is the union of these closed sets.
Whilst such preferences are ruled out by (JC), they are compatible with (CD).

When A is discrete, the following corollary shows that, given (Asy) and
(NT), (CD) is necessary and sufficient for a jointly continuous representation.

Corollary 3.2. If A is discrete, then any function U : AˆX Ñ R satisfying
condition (2) of theorem 3.1 is jointly continuous.

The proof of corollary 3.2 appears in appendix A2. This corollary allows
us to conclude that, for the case where A is countable and discrete, theorem
3.1 is a generalisation of Levin (1983, Theorem 1) and Caterino, Ceppitelli,
and Maccarino (2009, Theorem 4.2). The first reason is straightforward:
these theorems require that X is metrizable, whereas we require that it is
perfectly normal. The second reason is that corollary 3.2 and example 3.1
imply (JC) is not necessary for a jointly continuous representation.

It remains to compare theorem 3.1 with Caterino, Ceppitelli, and Mac-
carino (ibid., Theorem 4.1). The latter holds for submetrizable X. X is
submetrizable if there exists a metric space Y and a continuous bijection
f : X Ñ Y . This definition allows the inverse function f´1 to be discon-
tinuous. Taking X to be the space F, or the split interval, or the long line
(these were introduced in section 2 and are developed in subsection 4.4) yields
a perfectly normal parameter space that is not submetrizable (Buzyakova,
2006). This demonstrates the existence of applications to which theorem 3.1
applies, but the other results do not: even when A has just two alternatives.

6When Àx is complete and transitive, this is equivalent to assuming the usual
(semi)continuity of Àx at each x: ta : a Àx bu and ta : b Àx au are closed in A.
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If, on the otherhand, X is not perfectly normal, then corollary 3.1 guaran-
tees the existence of preferences that fail to satisfy condition (2) of theorem
3.1. Since this is necessary for a joint continuity of the representation, the
latter also fails to hold for such preferences. Note that this latter argument
holds regardless of the cardinality and topology of A.

Finally, corollary 3.2 also demonstrates that in many applications, it is
possible to assume (CD) and obtain the same result as (JC). Whilst the
requirement that A is discrete and countable is strong, it does allow us to
attain the upper bound for the parameter space. Moreover, the results of the
next subsection and subsection 4.1 allow us to view A as a salient subset of
a larger space A1 on which preferences at x P X are defined. For instance,
A might be the set of rational numbers with decimal expansion no greater
than 100 places, and A1 is the real line. This point is discussed further in
subsection 4.1 in a standard consumer choice setting.

3.3 Theorem of the maximum for discrete alternatives

Joint continuity of U : AˆX Ñ R is the first premise of Berge’s theorem of
the maximum. Berge’s theorem provides sufficient conditions for U to give
rise to a continuous value function V : X Ñ R. V is the function that selects
the supremum of the values Up¨, xq takes for each x P X. The same conditions
in Berge’s theorem also give rise to a u.h.c. (see previous subsection) optimal
choice correspondence C : X Ñ 2A ´H.

The remaining premises of Berge’s theorem relate to the set of constraints
on A that Val faces at each x P X. Thus, if Fpxq denotes the set of al-
ternatives available to Val at x P X, then Berge’s theorem requires that
F : X Ñ 2A ´H is compact-valued, u.h.c., and l.h.c.7 F is compact-valued
if Fpxq is compact for each x P X. When F is both u.h.c. and l.h.c., it said
to be continuous.

In most statements of Berge’s theorem, joint continuity of U is simply
assumed. In what follows, we will take preferences as primitive. We first
consider Berge’s theorem of the maximum when the conditions for Levin
(1983, Theorem 1) are satisfied.

Theorem 3.2. For A metrizable and σ-compact, and X metrizable, suppose
(Asy), (NT) and (JC) hold. Then there exists a jointly continuous utility
representation U : A ˆ X Ñ R of tăxuxPX . Moreover, for any F : X Ñ

2A ´H that is continuous and compact-valued, we have

7Recall from subsection 2.2 that F is lower hemicontinuous (l.h.c.) if, for every open
G Ă A, tx : Fpxq XG ‰ Hu is open in X.
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1. V p¨q :“ max tUpa, ¨q : a P Fp¨qu is a continuous function on X; and

2. Cp¨q :“ argmax tUpa, ¨q : a P Fp¨qu is a u.h.c. correspondence on X.

The proof of theorem 3.2 follows immediately from Levin (1983, Theorem
1) and Ichiishi (1983, Theorem 2.3.1). Given corollary 3.2, it is natural
to suppose a similar theorem exists under the conditions of theorem 3.1
provided we assume A is discrete. The only issue is that, when A is discrete,
the requirement that F is continuous is too strong.8 The following lemma
illustrates the problem.

Lemma 3.1. Let A “ ta, bu and let Y “ r0, 1s. Suppose that F : Y Ñ 2A´H
is continuous. Then F is constant.

The proof of lemma 3.1 appears in appendix A2. When F is constant,
any application to the usual constrained maximisation problems of consumer
and producer theory is precluded, for the budget set cannot vary with prices.
Fortunately, when A is discrete, we are able to weaken the premises of theo-
rem 3.2 so that F is u.h.c. instead of continuous. When A is also countable,
we may further weaken the premises to get: X perfectly normal instead of
metrizable and tăxuxPX satisfying (CD) instead of (JC). The result is the
following characterisation.

Theorem 3.3. For A discrete and countable, and X perfectly normal, (Asy),
(NT) and (CD) hold if and only if there exists a jointly continuous utility
representation U : A ˆ X Ñ R of tăxuxPX . Moreover, for any F : X Ñ

2A ´H that is u.h.c. and compact-valued, (1) and (2) of theorem 3.2 hold.

The proof of theorem 3.3 appears in appendix A2. The necessity of the
axioms in theorem 3.3 is useful for many applied settings where modellers
simply posit a jointly continuous utility function. It means that they assume
(CD) holds.

4 Applications

In each of the following four subsections, we apply the results of section 3.
The first application is to consumer theory where parameters are the prod-
uct of a standard set of price-wealth vectors with another set of parameters.
The secon application is to the literature on “topologies on types” and psy-
chological games. The third application is to belief dependence in a finance
setting. The final application is to a setting where preferences exhibit ref-
erence dependence and the parameter space is a lexicographically ordered
set.

8I thank Maxwell Stinchcombe for bringing this to my attention.
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4.1 Consumer theory with a discrete commodity space

A common setting where continuous parameter dependence arises is the the-
ory of consumer demand. Here Berge’s theorem of the maximum is used to
show that the value function that is indirect utility is continuous and the
demand correspondence is u.h.c. (see subsection 3.3) of price-wealth pairs
(Sundaram, 1996). This in turn is a stepping stone to envelope theorems
and other tools for comparative static analysis.

Let A Ă Rn´1
` be countable and discrete set of commodities. This might

be the set Zn´1` of vectors with nonnegative integer-valued entries, or with
rational entries that have decimal expansions restricted to (at most) 10 deci-
mal places. Whilst this assumption is not classical, it has received relatively
recent attention in Milgrom and Segal (2002) and Sah and Zhao (1998) and
is standard in the literature on discrete choice in econometrics (McFadden,
1984). It has also been motivated in the game theoretic setting by Aumann
and Brandenburger (1995) and Gilboa and Schmeidler (2003).

Let the set of parameters be the cartesian product of the set price-wealth
vectors Rn

`` with some other set of parameters Θ the observer deems to rel-
evant to Val’s decision making. The latter may include other socio-economic
data in econometric settings or characterise frames in experiments. Thus
X “ Rn

`` ˆΘ, and its elements are denoted by x “ pp, w, θq, where p is the
vector of prices pp1, . . . , pn´1q and w denotes wealth. Val’s ability to choose
elements of A is constrained by her budget. The budget correspondence
varies with the parameter in the following way:

B : X Ñ 2A ´H, x ÞÑ ta P A : p ¨ a ď wu . (˚)

For each x P X, Val is able to rank the elements of A according to ăx

with a view to identifying the best element(s) in Bpxq. To this end we
may suppose tăxuxPX satisfies (Asy) and (NT). This yields a representation
U : AˆX Ñ R satisfying condition (1) of theorem 3.1. The standard model
assumes that Θ is a singleton and that, for all x, y P X, ăx“ăy. The most
natural generalisation would let preferences vary across Θ.

Since A is discrete, Bpxq is compact if and only if it is finite for each x.
When this holds, (Asy) and (NT) are sufficient for a maximal element to
exist. If Val is indifferent between two or more best elements, these will all
lie in her demand correspondence at x. The latter is a map D : X Ñ 2A´H
such that Dpxq Ď Bpxq for all x P X.

For the purposes of conducting a comparative statics analysis a minimal
requirement is that there exists a continuous indirect utility function V :
X Ñ R, x ÞÑ maxtUpa, xq : a P Bpxqu, and that D is u.h.c. (For instance,
the latter ensures that the demand correspondence is continuous whenever
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it is a function.) For these properties to hold, theorem 3.3 requires that in
addition to assuming (CD), we must show that X is perfectly normal, and
B : X Ñ 2A ´H is compact-valued and u.h.c.

Provided we assume Θ is perfectly normal, the set X “ Rn
`` ˆ Θ is

perfectly normal by (Tkachuk, 2011, p.249). Indeed, this is true of any
cartesian product of a second countable space and a perfectly normal space.9

The application of the present model of preferences to the consumer demand
setting is therefore complete provided we can show the budget correspondence
B is sufficiently well-behaved. This task is a straightforward consequence of
the following two assumptions: A is a discrete subset of Rn´1

` and, by (˚), B
is independent of θ P Θ.10

4.2 Topologies on types

The present results are important for the literature on topologies on types
(Chen et al., 2010; Dekel, Fudenberg, and Morris, 2006; Mertens and Za-
mir, 1985). For instance, in Mertens and Zamir (1985) the main assumption
regarding the space S is compactness. The authors interpret a point in S
as a “full listing of the stategy spaces and payoff functions [of the play-
ers in a game]”. They then define a hierarchy of beliefs to be a sequence
∆0,∆1,∆2, . . . such that ∆0 is a compact subset of S, and for each k ą 0,
∆k is a compact subset of ∆k´1ˆr∆p∆k´1qs

n. Since S need not be perfectly
normal, and moreover, the product of perfectly normal spaces is not, in gen-
eral, perfectly normal, proposition 2.1 in conjunction with corollary 3.1 tell
us that the utility functions allowed by the model may not reflect the un-
derlying parametric continuity of preference. Chen et al. (2010) and Dekel,
Fudenberg, and Morris (2006) consider the special case where S is finite and
there are two players. The metrics they identify on the space of types ensure
the resulting type space is perfectly normal.

The literature on psychological games constructs a similar hierarchy of
beliefs. Our alternatives correspond to their outcomes, and our parameters

9The topology of a second countable space is generated by a countable collection of
basic open sets. The argument that Rn`` is second countable, is a straightforward extension
of the fact that the set of open intervals with rational endpoints generate the usual open
sets of R.

10The proof is as follows. Let D be a directed set and let pxν , aνqνPE be any net such
that pxν , aνq P txνuˆBpxνq for all ν P E and limpxν , aνq “ px, aq P X ˆA. Then, since A
is discrete, there exists ν1 such that for all ν ě ν1, aν “ a. Let xν “ ppν , wν , θνq for each
ν P E. Then, by (˚), for all ν ě ν1, we have pν ¨ aν “ pν ¨ a and pν ¨ a ď wν , so that indeed
p ¨ a ď w as a consequence of continuity of ď on R. This ensures that the graph of B is
closed a condition which is sufficient for u.h.c. (see the proof of theorem 3.3 for more on
this latter connection).
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correspond to their beliefs. (On Geanakoplos, Pearce, and Stacchetti (1989,
p.65) it is stated that “payoffs for player i are defined first on the outcomes
(given any belief profile b) and only afterward extended . . . ”.) Similar to
Chen et al. (2010) and Dekel, Fudenberg, and Morris (2006), Geanakoplos,
Pearce, and Stacchetti (1989) assumes the basic set S on which beliefs are
constructed is finite. They are therefore able to obtain a metrizable hierarchy
of beliefs. In a related paper, beginning with preferences Gilboa and Schmei-
dler (2003) provide a decision theoretic version with no explicit hierarchy of
beliefs. Their axioms are a superset of ours. Their assumptions also ensure
the set of beliefs is metrizable.

4.3 Continuous belief dependence and portfolio choice

Consider a setting where Val’s alternatives a P A consist of investment port-
folios. Consider an investment advisor wishes to check whether Val’s choice
of portfolio is robust to perturbations of Val’s beliefs. Once Val has ranked
the portfolios or chosen one, the investment advisor presents charts where
each one plots the evolution of a path representing a portfolio’s values across
time. When is this form of perturbation closely related to perturbing beliefs?
Moreover, suppose the investment manager has elicited a utility representa-
tion of Val’s preferences tăxux PX . In settings where (CD) appears to be
reasonable, when is the representation a continuous function of beliefs? A
large class of examples where the answers to both these questions is yes is
provided by part 1 of proposition 2.1.

The set X “ ∆pSq denotes the set of beliefs that Val might have. Val’s
preferences tăxux PX over a set of portfolios A are indexed by her beliefs. If
S is metrizable, then ∆pSq is metrizable and hence perfectly normal. Then
theorem 3.1 applies whenever axioms (Asy), (NT) and (CD) hold. This yields
a function U : AˆX Ñ R that is a utility function on A for each belief, and
is continuous in beliefs. Moreover, as the topology on S is embedded in that
of X, perturbations in the latter are indeed close to those of the former. In
this case, the actions of investment managers are justified.

On the other hand, when S is not perfectly normal, the contrapositive
of proposition 2.1 tells us that ∆pSq is not, and corollary 3.1 then provides
a warning to the investment advisor who has elicited a representation U :
AˆX Ñ R of preferences. He should be aware that a discontinuous Upa, ¨q,
for some a, does not imply discontinuous dependence of Val’s preferences.
Or, in the case that alternatives are discrete (as in section 4.1), the indirect
utility function of beliefs may reveal discontinuities that are absent in Val’s
preferences.
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Two constructions of Wiener measure We now provide a more detailed
demonstration of the relevance of proposition 2.1 and the results of section 3
for the financial setting. We draw on Nelson (1965) and Taylor (2006) who
construct the familiar (Wiener) probability measure of a Brownian motion
in two related, yet distinct, ways. The first yields a compact and metrizable
state space and set of beliefs, whereas the second yields a state space (and
hence set of beliefs) that is not perfectly normal.

Let Q` denote the nonnegative rational numbers and let 9Rn denote the
one-point compactification of Rn, that is 9Rn “ Rn Y t8u. Taylor (2006,
Ch.16) defines Wiener measure on the set of paths

B “
ź

tPQ`

9Rn.

As a product of compact spaces, B is compact. Moreover, since 9Rn is metriz-
able, so is the countable product B. Proposition 2.1 then ensures that the
set of probability measures ∆pBq is metrizable. This means that we may let
the set of Val’s beliefs to be X “ ∆pBq and define preferences tăxuxPX on
a set of portfolios A, and provided the axioms apply, theorem 3.1 ensures a
continuous representation exists.

One special belief that Val might have is Wiener measure. Consider the
set B0 of uniformly continuous paths in B. The set B0 is important, for
its elements have unique extension to the set CpR`;Rnq of continuous paths
from R` to Rn and since the path of a Brownian motion is almost surely
continuous, Wiener measure must assign probability one to B0. A fortiori,
Wiener measure must therefore be defined on B0. Taylor (ibid., Proposition
16.3) shows that B0 is indeed a Borel set. Since B is metrizable, it is perfectly
normal, and therefore B0 is also in the Baire σ-algebra.

A different approach to the construction of Wiener measure is taken by
Nelson (1965). Instead of starting with paths on the rationals and extending

to the reals as above, we consider the set of paths rB consisting of all functions
on R` with values in 9Rn. The relevant topology is, as before, the product
topology. As a product of compact sets, rB is compact. However, in this case,
although the set CpR`;Rnq is a Borel set, it is not in the Baire σ-algebra on
rB. As a result, the latter is not perfectly normal, and, although it is still
possible to define Wiener measure, proposition 2.1 implies that the set of
probability distributions ∆prBq will not be perfectly normal. So if Y “ ∆prBq,
corollary 3.1 implies that there exist preferences tăyuyPY satisfying (Asy),
(NT) and (CD) for which any function U : A ˆ Y Ñ R that is a utility
function on A, for each x P X, is discontinuous on X.
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4.4 Lexicographic reference dependence

This subsection develops a detailed example showing that the results apply
to problems that cannot be modelled using either a parameter-free utility
function or the pre-existing results in the literature on jointly continuous
utility representations. To fix ideas, we develop the example within a frame-
work of reference-dependent preferences, as in Kőszegy and Rabin (2006).
The distinctive feature of our model is that the parameter space is the lex-
icographically ordered set r0, 1s ˆlex t0, 1u that was introduced in section 2
as the split interval. We then extend the example to provide another where
there is no continuous representation even though preferences satisfy (CD).

Our choice of parameter space is important, for it is a leading example of
a compact space that is perfectly normal, but not metrizable. Since it is also
homeomorphic to the space F of increasing functions on r0, 1s with values in
t0, 1u with the topology of pointwise convergence (also introduced in section
2), the results also apply to the setting where F is the set of parameters.
The same applies to the long line that is formally defined at the and of the
subsection.

Reference dependent preferences Let A “ ta, bu be the set of prospects
(alternatives), and let X “ r0, 1s ˆ t0, 1u be the set of reference points (pa-
rameters). Assume that (Asy) holds, and that tx : a „x bu “ I ˆ t0, 1u for
some closed and nondegenerate interval I Ď r0, 1s. As in example 2.1, (NT)
trivially holds since |A| “ 2.

Lexicographic ordering of reference points Consider the lexicographic
ordering ălex over X that ranks x P X higher than y P X if and only
y1 ă x1 or [y1 “ x1 and y2 ă x2]. The ordering ălex need not reflect Val’s
“preferences” over reference points in general, and in any case, it is distinct
from her preferences tăxuxPX on A.

Order topology on reference points For any y, z P X, each of tx : y ălex xu
and tx : x ălex zu is an open order interval of X. From these basic sets, we
derive a topology τ by taking unions of finite intersections of such intervals
generates the lexicographic order topology on X. Because of the discrete na-
ture of the second dimension of X, an arbitrarily small open neighbourhood
of a point y “ py1, 1q is of the form tx : y ďlex x ălex zu, for some z satisfying
y1 ă z1. This neighbourhood is of the form

´

py1, z1q ˆ t0, 1u
¯

Y tyu (˚˚)
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Similarly, when y2 “ 0, small enough perturbations consider x ďlex y, so that
x1 ă y1. (See Vaughan (1971) for a more detailed discussion.)

Continuous reference dependence The collection of sets τ is distinct
from the one obtained by considering X as a subspace of R2 with the usual,
Euclidean topology. It is also distinct from the topology obtained by con-
sidering X as a subspace of the R2

` with the lexicographic order topology
(Munkres, 2000, p.107)). Nonetheless, it may be reasonable to suppose that
Val’s preferences on A satisfy (CD) with respect to τ . (CD) holds if the
sets tx : a ăx bu and tx : b ăx au are members of τ . The following lemma
confirms this is the case.

Lemma 4.1. The set tx : a „x bu is closed in X.

Proof of lemma 4.1. This follows because tx : a „x bu “ I ˆ t0, 1u and, by
Hernández-Gutiérrez (2013, Proposition 2.1), the latter is homeomorphic to
X “ r0, 1s ˆ t0, 1u for every closed and nondegenerate I Ď r0, 1s.

Representation of preferences With the topology τ , the set X is a well
known example of a perfectly normal topological space that is not metrizable
(Gruenhage and Moore, 2011). Thus, by theorem 3.1, there is a representa-
tion of Val’s preferences that characterises continuous parameter dependence.
By continuous parameter dependence, in this setting, we mean that for every
x P X such that a ăx b, there exists an open order interval of ălex of the
form (˚˚) containing x such that a ăy b for every y in that interval. That
is, a function U : A ˆX Ñ R such that, for each x P X, Up¨, xq is a utility
function on A and, for each a P A, Upa, ¨q is continuous on X.

Other approaches do not apply Since X is not metrizable, it does not
satisfy the conditions Levin (1983). (Similarly, Caterino, Ceppitelli, and
Maccarino (2009) does not apply.) Thus, the pre-existing results on joint
continuity do not apply. Futhermore, the fact that px1, 0q ălex px1, 1q for
each x1 P r0, 1s means that there is no real-valued utility representation of
ălex. (Any representation must have uncountably many open gaps (Debreu,
1964).) In turn, this implies that there is no utility representation of any
preference that Val might have over the yet larger set AˆX.

Generalising the example By theorem 3.1, the above example can im-
mediately be extended to a countable number of alternatives A. Somewhat
surprisingly, the next proposition confirms that the present example can-
not be extended so that the second dimension contains any other elements
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0 ă x2 ă 1. Any such parameter space (including the full unit square r0, 1s2)
fails to be perfectly normal, so that, by corollary 3.1, continuous reference
dependence may not be characterised by a continuous function.

Proposition 4.1. Let Y “ r0, 1sˆ
 

0, 1
2
, 1
(

be endowed with the order topol-
ogy generated by ălex. There is no continuous function f : X Ñ R such that
f´1p0q “ I ˆ t0, 1u.

The proof of proposition 4.1 appears in appendix A2. Hernández-Gutiérrez
(2013, Proposition 2.1) strengthens this result further, for any closed subset
of r0, 1sˆt0, 1u that has no isolated points is homeomorphic to Iˆt0, 1u and
as such there is a large class of parameter dependent preferences that do not
have a continuous representation.

The long line We conclude the section with another example of a perfectly
normal, but nonmetrizable set. It too involves a lexicographic ordering over
the set of parameters.

Example 4.1. Let X 1 be the cartesian product of the set Z` of nonnega-
tive integers with the half open interval of real numbers r0, 1q. Then X 1 “

Z` ˆ r0, 1q is homeomorphic to R` provided it is endowed with the topology
generated by the intervals tx : x ălex yu and tx : z ălex xu of ălex. Since R`
is metrizable, so is X 1.

Recall that Z` is the smallest well-ordered infinite set. Its supremum is
the first infinite ordinal number, and is often denoted by ω, and so we may
write Z` ” r0, ωq. An extension of this is the well-ordered set r0, ω1q of
all countable ordinal numbers. The supremum ω1 is the first uncountable
ordinal. With the above lexicographic order ălex and corresponding topology,
the product X2 “ r0, ω1q ˆ r0, 1q yields a set that is perfectly normal, but not
metrizable and is known as the “long line”.

In contrast, with R`Y tωu however, the one-point compactification X2Y

tω1u is not perfectly normal.

5 Summary

We have given conditions on preferences and the parameter space for a gen-
eral model of parametric continuity of preference. The main theorem shows
that preferences satisfying the axioms can be represented by a function that
is a utility given the parameter and is continuous on the parameter space.

Whilst the main drawback of the present model is that the set of al-
ternatives must be countable, this assumption has allowed us to obtain the
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minimal conditions for parametric continuity. Firstly, the axioms on prefer-
ences are necessary and sufficient for parametric continuity of the represen-
tation. Secondly, if the parameter space does not satisfy the conditions for
the main theorem, then there exist preferences that vary continuously with
the parameter, but have representation that is continuous in the parameter.

When the set of alternatives has the discrete topology, (CD), the axiom
that captures continuous parameter dependence, is both necessary and suffi-
cient for joint continuity of the representation on the product of alternatives
and parameters. This yields a generalisation of the existing results from the
literature on jointly continuous representations. Via a simple extension of
Berge’s theorem of the maximum, this joint continuity allowed us to derive
(i) a value function that is continuous and (ii) a choice correspondence that is
upper hemicontinuous. If the parameter space is not perfectly normal, there
are always preferences that satisfy (CD) and violate (i).

The first application considered a setting of consumer choice, where the
parameter space is the product of price-wealth vectors with an abstract space
of frames, types or other parameters. For the case where commodities are
discrete, the joint continuity of the representation allows us to obtain conti-
nuity of the indirect utility function and upper hemicontinuity of the demand
correspondence. That is to say, provided the set of parameters that we use
to extend the standard model is perfectly normal, the indirect utilty function
and demand correspondence are well-behaved.

Our second application was to the “topologies on types” literature and
psychological games. We saw that the Mertens and Zamir (1985) model of
types, which only requires compactness of the state space allows for prefer-
ences with utility representations that depend discontinuously on the param-
eter, even (CD) is satisfied. The other models all ensured the state space or
basic parameter space is finite, so that the set of types or beliefs is metriz-
able. Our results confirm that in these cases, perturbations of types are
well-defined for utility representations of preferences.

Our third application considered portfolio choice with belief dependence
of preferences. When the set of states is metrizable, then so is the set of
beliefs. This ensures that perturbations of states are topologically similar to
perturbations of beliefs. Moreover, theorem 3.1 applies, and this ensures that
perturbing the utility function with respect to beliefs or states is equivalent
to perturbing preferences. By contrast, the contrapositive of proposition
2.1 in conjunction with corollary 3.1 shows that there exist state spaces
that give rise to continuous belief dependence that cannot be characterised
with a continuous function. We argue that these results are important for
investment managers who may not be able to observe beliefs, but wish to
check a choice of portfolio is robust. These results are relevant even in the
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standard setting one encounters in mathematical finance, where prices are
driven by a Brownian motion.

Our final application considered reference dependence, where the parame-
ter space is the set of reference points. The topology on reference points that
we considered was generated by a lexicographic ordering. This example serves
to distinguish the present results from other models including parameter-free
approaches and the existing results on jointly continuous representations. Ex-
tending the same example to a larger set of parameters yielded a large class
of preferences for which continuous parameter dependence is not character-
isable. From an applied perspective, this example serves to highlight the
following: (i) the relevant topology need not be the usual Euclidean one; and
(ii) even simple topologies may not be metrizable. These observations are
important in checking robustness of strict preference and for capturing this
property with a utility function that is continuous in the parameters.

A1 Proof of theorem 3.1

The necessity of axioms (Asy) and (NT) for part (1) of theorem 3.1, is implied
by classical (parameter-free) representation theorems for each x. Moreover,
lemma 2.1 confirms that (CD) is also necessary.

Sufficiency of the axioms Let t1, 2, 3 . . . u be an arbitrary enumeration
of A, and by rjs we will denote the subset of A that contains the first j
elements of the enumeration. By U j : rjs ˆX Ñ R we will denote the utility
representation of the projection of preferences tăx: x P Xu onto the first j
elements of the enumeration. That is, if we recall that for each x P X, ăx is
a subset of AˆA, then we see that tăx: x P Xu Ă pAˆAq

X . Hence by the
projection of preferences onto rjs we mean tăx: x P Xu X prjs ˆ rjsq

X which
is a well defined intersection since

`

rjs ˆ rjs
˘X
X pAˆ AqX “

ź

xPX

`

rjs ˆ rjs
˘

X pAˆ Aq

“
ź

xPX

prjs X Aq ˆ prjs X Aq

“
`

rjs ˆ rjs
˘X
.

We use this projection to proceed by induction on A . For the basic case,
let U1p1, xq “ 0 for all x P X . By condition (Asy), U1 is a representation
for the projection of preferences onto r1s ˆ r1s and it is clearly continuous.
This completes the proof for the basic case. The induction hypothesis is
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the following. Suppose that for some j ě 1, there exists a representation
U j´1 of the projection of preferences onto rj ´ 1s. From this we obtain a
representation of the projection onto rjs .

For a P rj ´ 1s let U jpa, ¨q “ U j´1pa, ¨q . By the induction hypothesis, for
all a, b P rj ´ 1s and x P X we have,

a ăx b ô U j
pa, xq ă U j

pb, xq,

and on rj ´ 1s, U j is continuous. To complete the inductive step, we must
select a continuous function U jpj, ¨q on X such that for each x, U jp¨, xq :
rjs Ñ R represents ăx Xprjs ˆ rjsq.

Summary of inductive step Define upper and lower envelopes, g and h
respectively, of U jprj ´ 1s, Xq relative to alternative j . Check this pair of
functions satisfy the conditions for Michael’s selection theorem (the version
by Good and Stares (2000) that was defined in section 2). First, g : X Ñ R
is weakly dominated by h : X Ñ R pointwise; second, they are equal if
and only if for some k in rj ´ 1s, j „x k; third they are respectively upper
and lower semi-continuous. This, together with the fact that X is perfectly
normal, implies, via Michael’s selection theorem, that the required function
U jpj, ¨q exists.11

Definition of upper and lower envelopes The following step is com-
monly taken in the construction of envelopes. We introduce two fictional al-
ternatives a and a, such that for all x P X and k P rjs, we have a ăx k ăx a .
Accordingly, we define rj ´ 1s˚ :“ rj ´ 1s Y ta, au, and for each x P X, let
U jpa, xq “ ´8 and U jpa, xq “ `8. Both are clearly continuous functions
from X into the extended real line.12 Moreover, for all x P X, there exists
k, l P rj ´ 1s˚ such that k Àx j and j Àx l, so the following are well defined:

gpxq :“max
 

U j
pk, xq : k Àx j and k P rj ´ 1s˚

(

,

hpxq :“min
 

U j
pk, xq : j Àx k and k P rj ´ 1s˚

(

.

Applying Michael’s selection theorem The following three lemmata
ensure that g and h satisfy the conditions of g and h respectively in Michael’s
selection theorem.

11Recall, we choose continuous f : X Ñ R such that g ď f ď h and gpxq ă fpxq ă hpxq
whenever gpxq ă hpxq, where g and h are respectively upper and lower semi-continuous.

12The fact that they do not take values in R is of no concern for the final representation
as Michael’s selection theorem ensures that we only select a function with some value equal
to either of these if U jpa, xq ď U jpa, xq holds with equality, which is clearly impossible.

26



Lemma A1.1. For all x P X, gpxq ď hpxq .

Proof of lemma A1.1. On the contrary, suppose that for some x P X, hpxq ă
gpxq . Then, by construction, there exists k, l P rj ´ 1s such that k Àx j,
j Àx l. But since

hpxq :“ U j
pl, xq ă U j

pk, xq “: gpxq,

we either have a violation of (NT), or a violation of the induction hypothesis
(that U j´1p¨, xq was order-preserving at each x on rj ´ 1s).

Lemma A1.2. For all x P X : gpxq “ hpxq iff for some k P rj ´ 1s, k „x j.

Proof of lemma A1.2. If gpxq “ hpxq, then, by construction, there is some
k P tl : l Àx ju X tl : j Àx lu, and by (Asy), for every l in the intersection of
these sets l „x j. Conversely, if j „x k, then both k Àx j and j Àx k.

Lemma A1.3. g : X Ñ R is an upper semicontinuous function.

A symmetric argument to the one that follows, but with inequalities and
direction of weak preference reversed, shows that h is lower semicontinuous.

Proof of lemma A1.3. Recall (or see Kelley (1975, p.101)) that g is upper
semicontinuous provided the set tx : r ď gpxqu is closed for each r P R. Note
that by construction of g and the definition of maximum,

tx : r ď gpxqu “
ď

kPrj´1s˚

`

tx : r ď U j
pk, xqu X tx : k Àx ju

˘

which is a finite union of closed sets by the following arguments: firstly
U jpk, ¨q is continuous, so that tx : r ď U jpk, xqu is closed (preimage of a
closed set is closed); and secondly, tx : k Àx ju is closed by (CD). Since the
finite union of closed sets is closed the proof of claim A1.3 is complete.

The countably infinite case The above argument holds for each j in N,
and since we have been choosing functions using Michael’s selection theorem
for each j, we may extend to all of N by appealing to the axiom of dependent
choice. This ensures that we may define U : AˆX Ñ R as follows

U “
ď

jPN
U j.

This extension to the countably infinite case is equivalent to the argument of
Kreps (1988, p.23). There, we instead extend to the countably infinite case
using a diagonal argument Upj, ¨q “ U jpj, ¨q for each j P N, and appeal to
the axiom of (dependent) choice.13

13I thank Atsushi Kajii for bringing this subtle issue to my attention.
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A2 Remaining proofs

Proof of proposition 2.1. For each s P S, the Dirac measure δs on Σ
is the function that assigns value 1 to any set that contains s and is zero
otherwise. The preimage of the open set tr P R : r ‰ 1u under δs is equal to
the union of all sets that do not contain s; it is therefore equal to S ´ tsu,
and is therefore open. Thus, the mapping s ÞÑ δs is thereby continuous and
injective. Recall that every continuous injection that is a closed map is also
an embedding. That is, a homeomorphism onto its image. Thus, if the image
δS Ă X of S under δ is closed, and we will have shown that there exists a
subspace of X that is not perfectly normal. This implies that X itself fails to
be perfectly normal, for every subspace of a perfectly normal space inherits
the same property.

The following argument shows that δS is indeed closed. Consider any
net tδsu in δS converging weakly to µ in PpSq. By the definition of weak
convergence,

ş

S
fdδs Ñ

ş

S
f dµ, for each continuous f : S Ñ R. Now

ş

S
f dδs “ pf˚δsqpRq “ fpsq for each s, and since f is continuous and S

is compact, fpsq converges to some k in the image of f . Hence,
ş

S
fdµ “ k

and µ lies in δpSq and the proof is complete.

Proof of corollary 3.2. Fix pa, xq P AˆX and consider, for some directed
set D, a net E “ ppaν , xνqqνPD in A ˆ X with limit pa, xq. We show that
Upaν , xνq Ñ Upa, xq. Recall that pa, xq is the limit of E if and only if, for
every neighborhood N of pa, xq, there exists µ P D such that for every ν ě µ,
paν , xνq P N . Since A is discrete, tau is open and for some Nx open in X, the
set tau ˆNx is an (open) neighborhood of pa, xq in the product topology on
AˆX. Thus, there exists µ such that for every ν ě µ, Upaν , xνq “ Upa, xνq.
Finally, condition 2 of theorem 3.1 ensures that Upa, xνq Ñ Upa, xq.

Proof of lemma 3.1. Suppose otherwise. In particular suppose that for
some x P r0, 1s, Fpxq “ B and for some y ą x, Fpyq ‰ B.

The first case is B “ A. Then since Fpyq ‰ H, without loss of generality,
suppose Fpyq “ tau and let G :“ tau. Let F`pGq denote tz : Fpzq Ă Gu
and let F´pGq denote tx : Fpxq X G ‰ Hu. If F`pGq is open, then F is
u.h.c. However, by Ichiishi (1983, p.32), F`pGq “ X ´ F´pA ´ Gq, so that
F´pA ´ Gq “ F´ptbuq is closed. It is also nonempty, for x P F´ptbuq and
not equal to r0, 1s as it does not contain y. But then it fails to be open, a
contradiction of the assumption that F is l.h.c. A similar argument shows
that u.h.c. fails whenever l.h.c. holds.

The second case is where B ‰ A for all z P r0, 1s. In this case, the same
argument shows that u.h.c. and l.h.c. cannot simultaneously hold.
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Proof of theorem 3.3. First note that, since A is discrete, Fpxq is com-
pact iff Fpxq is finite. For (1), the proof of Ichiishi (1983) requires upper
semicontinuity of pa, xq ÞÑ Upa, xq and u.h.c. of Fp¨q. By corollary 3.2, U is
jointly continuous, and so the proof of (1) follows from that of (2).

Since C “ C X F , and F is u.s.c. and compact valued, (2) follows from
lemma 2.2.2 and theorem 2.2.3 of Ichiishi (ibid.), provided that the graph of C
is closed in XˆA. The graph of C is the set gr C “ tpx, aq P XˆA : a P Cpxqu.
For any directed set D, let pxν , aνqνPD be any net with values in gr C and limit
equal to px̄, āq. Since A is discrete, the singleton set tau is the smallest open
neighbourhood of any a P A. Thus pxν , aνqνPD satisfies the property that for
some µ P N , aν “ ā for all ν ě µ. Thus, pxν , aνq is eventually in G ˆ tāu
for some open G Ă X. Since Cpxνq Ď Fpxνq for every ν P D, ā P Fpxνq for
every ν ě µ. Since F is u.s.c., its graph is closed, and px̄, āq P grF . Then
by joint continuity of U , limν Upxν , aνq “ Upx̄, āq. Now suppose that there
exists a P A such that Upx̄, āq ă Upx̄, aq, so that ā is not an argmax at x̄.
But this would contradict the assumption that ā is an argmax for all ν ě µ.
Thus px̄, āq P grC, as required.

Proof of proposition 4.1. Recall that an arbitrary continuous function
f : X Ñ R satisfies the property that Gn “

 

x : |fpxq| ă 1
n

(

is open for each
n P Z``. We show that

Ş8

1 Gn ‰ F . The proof is immediate unless F Ď Gn

for each n P Z``, so suppose this case holds. Then, by Hernández-Gutiérrez
(2013, Proposition 2.1) F is homeomorphic to the compact set r0, 1sˆt0, 1u.
Thus, for each n, Gn can be taken to be the union of finitely many open sets.
Every element y that lies between the upper and lower bound of F , has a
neighbourhood of the form of equation (˚˚). Thus, each Gn contains all but
finitely many elements of the set I ˆ t1

2
u. Since there are only countably

many n P Z``, the deletion of a countable union of a finite number of points
is still countable, so the intersection

Ş8

1 Gn contains elements of Iˆt1
2
u.
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