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SAVAGE GAMES
A Theory of Strategic Interaction with

Purely Subjective Uncertainty

SIMON GRANT, IDIONE MENEGHEL, AND RABEE TOURKY

Abstract. We define and discuss Savage games, which are ordinal games that are set
in L. J. Savage’s framework of purely subjective uncertainty. Every Bayesian game is
ordinally equivalent to a Savage game. However, Savage games are free of priors, prob-
abilities and payoffs. Players’ information and subjective attitudes toward uncertainty
are encoded in the state-dependent preferences over state contingent action profiles. In
the games we study player preferences satisfy versions of Savage’s sure thing principle
and small event continuity postulate. An axiomatic innovation is a strategic analog of
Savage’s null events. We prove the existence of equilibrium in Savage games. This result
eschews any notion of objective randomization, convexity, and monotonicity. Applying
it to games with payoffs we show that our assumptions are satisfied by a wide range
of decision-theoretic models. In this regard, Savage games afford a tractable framework
to study attitudes towards uncertainty in a strategic setting. We illustrate our results
on the existence of equilibrium by means of examples of games in which players have
expected and non-expected utility.

Keywords: Bayesian games, multiple priors, non-expected utility, subjective uncer-
tainty, existence of equilibrium, decomposable sets.

1. Introduction

Consider the N -player Bayesian game

((Ωi,Σi), Ai, ui, π)
N
i=1 ,

where (Ωi,Σi) is the measurable space of Player i’s types and Ai is a compact metric space
of Player i’s actions. Player i has a bounded measurable payoff function

ui : A× Ω → R ,

where A = ×jAj is the set of action profiles and Ω = ×jΩj is the space of type profiles.
Letting Fj be the set of all measurable strategies fj : Ωj → Aj of Player j, Player i’s
expected utility for the strategy profile f in F = ×jFj is

Ui(f) =

∫
Ω
ui(f(ω), ω) dπ(ω) ,

where π is the probability measure on type profiles representing the players’ common prior.
This induces for Player i a preference relation ≿i on the set of strategy profiles F ,

whereby f ≿i g whenever Ui(f) ≥ Ui(g). The triple, (Ω, A,≿i), can in turn be articulated
in terms of Savage’s (1954) framework of purely subjective uncertainty. The set of type
profiles Ω is Savage’s state space; the set of action profiles A plays the role of Savage’s
outcome space; and preferences ≿i are restricted to those Savage acts f : Ω → A that are
strategy profiles.

Our interest is to study N -player games specified by (Ω, A, (Fi,≿i)
N
i=1), where Ω is the

common state space and A is the common action space. For Player i, Fi is a given subset
of A-valued functions on Ω comprising those strategies available to that player and ≿i is
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2 GRANT, MENEGHEL, AND TOURKY

a preference relation defined over strategy profiles in F = ×jFj . We call these Savage
games. They redact all cardinal aspects of Bayesian games (utilities and priors), the
intrinsic attitudes towards uncertainty are purely subjective, and the common state and
action spaces need not be Cartesian products of underlying individual state and action
spaces. An equilibrium is a Nash equilibrium of the N -player ordinal game (Fi,≿i)

N
i=1.

We study three behavioral properties that are inherited from Bayesian games.
(a) Any deviation by a player from one best response to another conditional on an

event remains a best response. This version of Savage’s sure thing principle holds
in all Bayesian games.

(b) If a deviation by Player i affects Player j’s preferences, then the effect on j is robust
to Player i making “errors” that are conditioned on the small events specified by
some partition of the state space. This interdependent version of Savage’s small
event continuity postulate is satisfied in a continuous Bayesian game with a com-
mon prior that has atomless marginals.

(c) Analogously to Savage’s null events, we say that an event is strategically null for
Player i if any deviation on that event by the player does not affect any players’
preferences. Events that are not null are “full” in a behavioral sense: for every
sequence of events that has no subsequence decreasing to a null event there is a
state whose average incidence is asymptotically bounded away from zero. In a
Bayesian game with common priors every zero probability event is a strategically
null event; hence, this property is satisfied.

With the following additional condition we prove the existence of equilibrium and in the
process develop a theory of equilibrium existence that is derived entirely from the ordinal
preferences of the players.

(d) Players have the opportunity to respond to other players using strategies that are in
an equicontinuous class of functions. In a Bayesian game, this is satisfied when one
can always find a best response with bounded marginal change in chosen actions
with respect to own types.

Turning to games with payoffs, we study properties (a), (b), and (c) when the ex ante
evaluation of strategy profiles can be expressed as a recursive function of interim utilities.
We show that a wide range of properties studied in the literature satisfy our assumptions.
The analysis includes games in which players’ ex ante utilities are of the maxmin expected
utility form of Gilboa and Schmeidler (1989) if the following three conditions hold.

(1) Payoffs are continuous in action profiles.
(2) There is a measure with atomless marginals that dominates the multiple priors of

all players.
(3) The preferences admit a utility representation in the recursive form of Epstein and

Schneider (2003) and for each player the multiple priors are mutually absolutely
continuous (cf. Epstein and Marinacci (2007)).

Here an application of our existence theorem simply requires us to check condition (d).
We illustrate this by establishing the existence of equilibrium in two versions of a location
model on the n-sphere. The first is a Bayesian game in which each player has her own (not
necessarily common) prior and the second is a game with multiple priors for each player.
In these examples players simultaneously choose locations on an n-dimensional unit sphere
and have payoff functions that depend in a general way on the location choices and types
of all players. We establish that property (d) holds by constructing a parametrization of
strategies using a selection theorem for closed-valued Lipschitz continuous correspondences.

The theorem on the existence of equilibrium develops techniques and utilizes a new
fixed point theorem in non-linear analysis (for this, see the discussion following Theorem
2.8 and Theorem A.4.) Our techniques extend the concepts in Athey (2001), McAdams
(2003) and Reny (2011), who proved the existence of monotone equilibrium in Bayesian
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games with continuous lattice-ordered action spaces and atomless type spaces. The recent
paper of Reny (2011) provides the most refined argument, he uses a homotopy method
to trace decomposition paths in the sub-semilattices of monotone best responses. The
present work frees these techniques from any order-theoretic requirement and extends the
approach well beyond Bayesian games. The key idea is that the set of strategies and
the sets of best responses are decomposable in the sense of Rockafellar (1968, 1971) and
related literature on non-linear analysis. This decomposable choice property was studied
in a decision-making framework by Grant, Kajii, and Polak (2000), who applied their own
tracing arguments. By means of conditional deviations, in this paper we can continuously
pass from one best response to another without leaving the set of best responses. This
property, which is a consequence of our sure thing principle, our small event continuity, and
the “fullness” property of non-null sets (respectively, (a), (b), (c) above) allows us to apply
path following arguments without any convexity assumption, or any meaningful notion of
monotonicity. Assumption (d) ensures that we have the required compactness property to
establish the existence of equilibrium.

The paper is organized as follows. In Section 2 we describe and study Savage games
and state our main theorem. In Section 3 we study games with recursive payoffs and
priors. We highlight in this section how our assumptions and the result on the existence of
equilibrium translate to Bayesian games, games with multiple priors and games in which
preferences display other forms of non-expected utility. Section 4 focuses specifically on
preferences that have the maxmin expected utility representation. Section 5 contains the
two examples. We conclude with a discussion of open questions and possible extensions of
this work in Section 6. The proofs are in Appendix A.

2. Savage games

A Savage game is an N -player ordinal game modeling choice under uncertainty with
interdependent preferences. It is specified by the ternion

(Ω, A, (Fi,≿i)
N
i=1) .

The set Ω denotes the common state space and A is the common nonempty action set
endowed with a topology in which single points are closed. The tuple (Fi,≿i)

N
i=1 is an

N -player ordinal game whose parameters are described below.
There are N ≥ 1 players indexed by i = 1, . . . , N . We abuse notation by having N

also denote the set {1, . . . , N}. However, we employ standard notation for the indexing
of player profiles. In particular, for any N -tuple (Zi)

N
i=1 of sets we write Z for its N -ary

Cartesian product and for each player i we write Z−i for the Cartesian product of the tuple
(Zj)j ̸=i. Vectors in Z are called profiles and vectors in Z−i are called profiles of players
other than i. A profile z ∈ Z is also written as (zi, z−i) where zi is the i-th coordinate of
z and z−i is the projection of z into Z−i.

Player i has a non-empty set Fi of A-valued functions on the state space Ω called the
strategy space. A function fi : Ω → A in Fi is called a strategy for player i. Let F be the
set of strategy profiles and for each i let F−i be the set of strategy profiles of players other
than i.

Player i is also associated with a preordering ≿i on the set of strategy profiles F de-
scribing her weak preferences. That is, ≿i is transitive and reflexive. Let ∼i represent the
indifference relation associated with ≿i, that is f ∼i g if f ≿i g and g ≿i f . We assume
throughout that the following completeness condition is satisfied.

A1. For any f ∈ F , gi ∈ Fi either f ≿i (gi, f−i) or (gi, f−i) ≿i f .

A strategy profile f ∈ F is an equilibrium if

f ≿i (gi, f−i)
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for all gi ∈ Fi and i ∈ N . Under A1 f ∈ F is an equilibrium if and only if it is a Nash
equilibrium of the ordinal game (Fi,≿i)

N
i=1.

In a Savage game the information available to a player is encoded in the specification
of the set of strategies Fi. Following standard notation, for any subset E ⊆ Ω and two
functions fi, gi : Ω → A let giEfi be the function from Ω to A given by

giEfi(ω) =

{
gi(ω) if ω ∈ E ,

fi(ω) otherwise .

We refer to the function giEfi as the gi-deviation from fi conditional on E.

Information events. A set of states E ⊆ Ω is an (information) event for Player i if she
can condition her choice of strategy on E, that is, giEfi ∈ Fi for all fi, gi ∈ Fi. Denote by
Fi the family of events for Player i.

The next assumption is motivated by Savage’s sure thing principle. We shall omit the
quantifiers from our assumptions when they are obvious. In particular, f is understood as
an arbitrary member of F , fi and gi of Fi, and E always denotes an event in Fi.

A2. If f ∼i (gi, f−i) ≿i (giEfi, f−i) for all E ∈ Fi, then (giEfi, f−i) ∼i f for all E ∈ Fi.

The reader will see in Section 3 that in games in which the preferences are given by
payoffs A2 holds when any of a wide range of assumptions that have been studied in the
literature are satisfied. In particular, A2 is implied by Savage’s postulate P2.

Proposition 2.1. The following condition implies A2
P2: If f ≿i (giEfi, f−i), then (fiEgi, f−i) ≿i (gi, f−i).

We do not assume that the game contains constant strategies or that it is non-degenerate
in the sense of Savage. We make, however, the following “richness” assumption on strategies.

A3. If En ∈ Fi is an increasing sequence, then gi(∪nEn)fi ∈ Fi for all fi, gi ∈ Fi.

Assumption A3 guarantees that Fi is a σ-algebra.

Proposition 2.2. Fi is an algebra over Ω. If A3 holds, then it is a σ-algebra.

When a measure-theoretic framework is available we have the following.

Corollary 2.3. Let Σi be a σ-algebra over Ω and A be a compact metric space, with
|A| ≥ 2. If Fi is the set of all Σi-measurable functions to A, then A3 holds and Fi = Σi.

We extend the concept of a Savage null event to our setting of interdependent preferences.
An event will be deemed (Savage) null for a player if any deviation that player can make
conditional on that event from any strategy profile leaves all players indifferent.

Null events. An event E ∈ Fi is null for Player i if for all f ∈ F and all gi ∈ Fi we have
(giEfi, f−i) ∼j f , for every player j ∈ N . Denote by Ni the set of all events that are null
for Player i. Let Ri = Fi \ Ni be the set of relevant events for Player i.

Notice that two players i, j ∈ N may share an event E ∈ Fi∩Fj that is null for Player i
but relevant for Player j. We do not view this as anomalous or inconsistent. It simply
means that when conditioning on this event, no deviation by Player i can make anyone
better or worse off, however, there exists at least one deviation by Player j that makes at
least one player in the game either better or worse off.1

1Karni, Schmeidler, and Vind (1983) note that if preferences are state-dependent, then interpreting null
events as ones that are necessarily viewed by the decision-maker as having zero probability of occurring
is problematic. For example, if one of the events involves loss of life then its nullity could reflect the
decision-maker having no strict preference about which outcome obtains in the event she is dead, rather
than her believing she has no chance of dying.
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We turn now to the continuity of preferences. While the product topology is too coarse
to be useful for our purpose, a fine topology that is closely related to metric spaces is the
sequential topology, whereby a set W of functions from Ω to A is open if every sequence
of functions converging state-wise to a function in W is eventually in W .2 We require
continuity of preferences in the sequential topology, and note that the condition is satisfied
in continuous games in which utility is computed by means of integrals.

A4. If fn ∈ F and gni ∈ Fi are two sequences converging state-wise to f ∈ F and gi ∈ Fi,
respectively, and (gni , f

n
−i) ≿i f

n for all n, then (gi, f−i) ≿i f .

The set of null events for Player i is automatically an ideal, and assumption A4 guar-
antees that it is a σ-ideal.

Proposition 2.4. Ni is an ideal in Fi. If A3 and A4 hold for all players, then Ni is a
σ-ideal.

The next assumption is a “fullness” assumption on relevant events. It adapts the Ryll-
Nardzewski and Kelley condition for Boolean algebras to our setting (see the addendum
to Kelley (1959)). A family of events S ⊆ Fi is closed if for any increasing sequence of
events En in S whose union E is an event, we have E ∈ S.

A5. There is a sequence of closed families Sm
i of events satisfying:

(1) If E ∈ ∩mSm
i , then E is null for Player i.

(2) If En is a sequence of relevant events for Player i and

lim inf
n→∞

max
ω∈Ω

1
n |{1 ≤ k ≤ n : ω ∈ Ek} = 0 ,

then for each m there is n such that En ∈ Sm
i .

Interpreting the sequence Sm
i as families of small events forming a neighborhood base

for the subfamily of null sets in condition (1), condition (2) asserts that if the average
incidences arising from the sequence En uniformly converges to zero for all states, then
En has a subsequence that “converges” to a null event. Condition (2) guarantees that for
each Sm

i there is a number cm > 0 such that if Xn is a sequence of random variables and
for some α ∈ R the sets {ω : Xn(ω) ≥ α} are not in Sm

i , then the empirical cumulative
distribution of this sequence satisfies DX(β) ≤ 1− cm for every β < α.

The following result is proved in Appendix A.

Proposition 2.5. If A3, A4 hold for all players, then the following are equivalent:
(1) Assumption A5 holds for Player i.
(2) Fi admits a measure πi such that πi(E) = 0 if and only if E ∈ Ni.

The next assumption is an interdependent version of Savage’s postulate P6, which is
usually interpreted as a small event continuity property.

A6. If f ̸∼j (gi, f−i) for some j ∈ N , then for each hi ∈ Fi there exist events {E1, . . . , Ek}
such that ∪kE

k = Ω and f ̸∼j (hiEngi, f−i) for all k.

As with P6, this assumption ensures that relevant events are the union of two disjoint
relevant events.

Proposition 2.6. If A6 holds, then every E ∈ Ri contains two disjoint events in Ri.

We next characterize when A5 and A6 hold. The proof of the next proposition is also
in Appendix A.

2With small event continuity, which appears in the sequel, the continuity of preferences in the product
topology, involving convergent nets of strategies, implies that f ∼i g for all pairs of strategy profiles.
Notice that gi is the limit of the net giEfi where E ∈ Ni, directed by inclusion.
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Proposition 2.7. If A3 and A4 hold for all players, then the following are equivalent:
(1) Assumptions A5 and A6 hold for Player i.
(2) Fi admits an atomless measure πi such that πi(E) = 0 implies E ∈ Ni.

Notice that in condition (2) some null events of a player may be given a positive measure.
The only requirement is that all events assigned zero measure are null for that player. Since
we are dealing with countably additive measures, however, there exists a corresponding
measure that is positive on relevant events and zero on all null events.

State-wise agreeing strategies. A strategy fi ∈ Fi agrees with a set of strategies Xi ⊆
Fi if

fi = g1iE1(g
2
iE2(· · · (gK−1

iEK−1g
K)))

for some gki ∈ Xi and Ek ∈ Fi, k = 1, . . . ,K. Denote by X̃i the closure of {fi ∈
Fi : fi agrees with Xi} in the sequential topology. Functions in X̃i are said to state-wise
agree with Xi.

A subset of strategies Xi ⊆ Fi is said to be countably distinguished if there exists a
countable set of states W ⊆ Ω such that for any distinct fi, gi ∈ Xi we have fi(ω) ̸= gi(ω)
for some ω ∈ W.

A7. For each i there is a set Xi ⊆ Fi of strategies satisfying the following:
(1) For each fi ∈ F , each f−i ∈ X̃−i there is gi ∈ Xi satisfying (gi, f−i) ≿i f .
(2) Xi is countably-distinguished and every sequence in Xi has a subsequence converg-

ing state-wise to a strategy in Xi.

Assumption A7(2) is equivalent to saying that Xi is metrizable and compact in the
sequential topology. For clarity, we provide some examples of such spaces.

(a) Xi is a finite set.
(b) Xi contains a countable set and its countable accumulation points.
(c) If Ω and A are compact metric spaces, then any closed collection of equicontinuous

strategies satisfies this assumption. In particular, Xi is the set of all Lipschitz
continuous functions with common constant.

(d) Suppose that Ω is the set of all continuous functions from [0, 1] to R, and A is the
set of Radon measures on [0, 1]. Then the set of all Radon probability measures
with the weak∗-topology has the required property.

(e) Suppose that Ω = [0, 1] and A = Rd. For any compact set of functions Y in L∞,
there is a selection from the equivalence classes of these functions that is compact
and metrizable in the sequential topology.

(f) Suppose that Ω is a measure space with σ-algebra Σ, and A is a Banach space.
This assumption is satisfied whenever Xi is a sequentially compact set of bounded
measurable functions for the topology of state-wise convergence, and there is a
probability measure π on Σ such that if fi and gi are distinct functions in Xi, then
they differ on a set of positive π measure.

We are now ready to state the main result.

Theorem 2.8. If A1 to A6 hold for all players, then an equilibrium exists if and only if
A7 holds.

The proof is in Appendix A but we conclude this section with a brief overview of the line
of argument. The proof relies on a fixed point theorem for closed-graphed decomposable-
valued correspondences. The idea is a novel notion of monotone purification that allows
us to apply a fixed point theorem for absolute retracts. Basically, we take the subset
of strategy profiles X given by assumption A7. While X does not admit any continuous
ordering, it is compact and metrizable, and thus it is the image of a closed subset C of [0, 1].
We then consider the set of cumulative distributions on C, and show that each of these
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cumulative distributions maps back to a strategy profile in X̃. So we transfer the existence
of equilibrium problem to a fixed point problem in the space of cumulative distributions
on C. By means of A1 and A3 to A6, we transform the best response correspondence into
a closed-graphed correspondence on our set of cumulative distributions. A2 guarantees
two things. First, that any fixed point of the correspondence on cumulative distributions
can be mapped back by a “monotone purification argument” into an equilibrium of the
game. Second, it guarantees that the transformed best response correspondence is an
acyclic correspondence on an absolute retract, which has a fixed point by the Eilenberg
and Montgomery theorem.

3. Games with recursive payoffs

Our purpose in this section is to study a class of games in which a player’s ex ante
evaluation of strategy profiles can be expressed as a recursive function of her interim
utilities or payoffs. The assumptions that we impose on these games essentially allow for
almost arbitrary assessments by a player of other players’ strategies. The Savage games
associated with these games naturally satisfy assumptions A1 to A6. The games include
Bayesian games, games with multiple priors that admit a recursive representation, and
more generally games with preferences over interim payoffs satisfying many conditions
studied in the literature on decision making under uncertainty. We shall study the specific
class of games with multiple priors in the next section.

Consider a game in interim utility form specified as follows:

((Ωi,Σi), Ai,Vi,Ui)
N
i=1 ,

where (Ωi,Σi) is the measurable space of Player i’s types and Ai is a compact metric
space of Player i’s actions. The space of type profiles Ω = ×N

i=1Ωi has the product algebra
Σ = ⊗N

i=1Σi.
Let Fi be the set of all Σi-measurable strategies fi : Ωi → Ai. Player i is associated

with an interim utility function Vi : Ai×F−i×Ωi → R, where Vi(ai, f−i|ωi) is the interim
utility for Player i whose type is ωi if she chooses action ai when the other players are
choosing their actions according to the strategy profile f−i. For any strategy profile f ∈ F
we write Vi(f) for the real-valued function ωi 7→ Vi(fi(ωi), f−i|ωi), which we assume is
always bounded and Σi-measurable.

We call a bounded and Σi-measurable real-valued function αi : Ωi → R an interim payoff
for Player i. Player i has ex ante preferences over interim payoffs expressed by the utility
function Ui that associates with each αi an ex ante utility Ui(αi) in R. The ex ante utility
Ui(f) of Player i for the strategy profile f ∈ F is given by means of the recursive form

Ui(f) = Ui ◦Vi(f) .

An equilibrium is a Nash equilibrium of the normal form game (Fi, Ui)
N
i=1.

Extending the notation of the previous section to interim payoffs we make the following
decomposition assumption on preferences over interim payoffs.

B1. If αi, βi are two interim payoffs and Ui(αi) = Ui(βi) ≥ Ui(βiEiαi) for all Ei ∈ Σi,
then Ui(βiEiαi) = Ui(αi) for all Ei ∈ Σi.

We also require that ex ante utility over strategy profiles be continuous with respect to
an atomless measure.

B2. There exists a probability distribution µ : Σ → [0, 1] such that
(1) All the marginal distributions µ̂i : Σi → [0, 1] of µ are atomless.
(2) If fn is a sequence of strategy profiles that converges µ-almost everywhere to f ,

then Ui(f
n) converges to Ui(f) for all i.
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Let Ā be the disjoint union of the sets Ai endowed with a consistent metric for which it
is compact. For each fi ∈ Fi let f̄i be the Ā-valued function on Ω given by f̄i(ω) = fi(ωi).
Define F̄i = {f̄i : fi ∈ Fi}, which yields the Savage game

(Ω, Ā, (F̄i,≿i)
N
i=1)

where ≿i is given by f̄ ≿i ḡ if and only if Ui(f) ≥ Ui(g) for any f̄ , ḡ ∈ F̄ .

Proposition 3.1. If B1 and B2 hold, then the associated Savage game satisfies A1 to A6.

We now explore properties of players’ ex ante attitudes towards interim payoffs as em-
bodied in Ui, which guarantee that B1 is satisfied. Of course, Ui only depends on a
Player i’s own type, so behaviorally the properties that we discuss are purely decision the-
oretic embodying the player’s attitudes toward non-strategic uncertainty. In this regard,
these properties can be compared to the generalizations of expected utility in the literature.

Example 3-1 (Strictly monotone utility)
The first property simply requires that players have strictly monotonic preferences over

interim payoffs. Some form of monotonicity is present in nearly all generalizations of
expected utility. Using the measure from B2, if Ui is strictly monotone for the marginal
µ̂i-pointwise ordering of interim payoffs, then B1 holds.

Let µ be the measure from B2. For any interim payoffs write αi ≥ βi if αi(ωi) ≥ βi(ωi)
for µ̂i-almost all ωi. Write αi > βi if αi ≥ βi and αi(ωi) > βi(ωi) over a set of positive
µ̂i-measure. Suppose that Ui(αi) ≥ Ui(βi) holds whenever αi ≥ βi and Ui(αi) > Ui(βi)
whenever αi > βi. We show that B1 holds. Take αi, βi from that condition. Notice that

Ui(αi) ≥ Ui(αi ∨ βi) ≥ Ui(αi) ,

where αi ∨βi is the pointwise supremum of the interim payoffs. Thus, αi ∨βi(ωi) = αi(ωi)
µ̂i-almost surely. This implies that αi(ωi) = βiEiαi(ωi) µ̂i-almost surely for any Ei ∈ Σi.
Monotonicity now tells us that Ui(αi) = Ui(βiEiαi), as required. ■

Example 3-2 (Supermodular utilities)
In the presence of ambiguity aversion, preferences over interim payoffs need not be strictly
monotonic though weak monotonicity can usually be guaranteed (see for example Gilboa
(1987)). However, if Ui can be represented by a Choquet integral and exhibits Schmeidler’s
(1989) notion of uncertainty aversion, then Ui will be supermodular (Denneberg, 1994,
Corollary 13.4, p. 161). In fact, weak monotonicity and supermodularity together imply
that condition B1 holds.

For any interim payoffs αi and βi denote by αi∨βi and αi∧βi the state-wise supremum
and infimum payoffs. Assume that Ui is non-decreasing in the sense that if αi(ωi) ≥ βi(ωi)
for all ωi, then Ui(αi) ≥ Ui(βi). Now suppose that Ui satisfies supermodularity:

Ui(αi ∨ βi) +Ui(αi ∧ βi) ≥ Ui(αi) +Ui(βi) .

We show that B1 holds. Take αi, βi from that condition and notice that

Ui(αi) ≥ Ui(αi ∨ βi) and Ui(βi) ≥ Ui(αi ∧ βi) ,

because αi ∨ βi = βiEαi and αi ∧ βi = αiEiβi for E = {ωi : βi(ωi > αi)}. Therefore,
Ui(αi ∧ βi) = Ui(αi). From this and the monotinicity of Ui we conclude that for any
E ∈ Σi we have

Ui(αi) ≥ Ui(βiEαi) ≥ Ui(αi ∧ βi) = Ui(αi) ,

as required. ■
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Example 3-3 (Decomposable choice)
Moving away from explicit monotonicity, we give a “betweenness” condition on prefer-

ences over interim payoffs that generalizes Savage’s P2 postulate and that also satisfies the
property B1 above. Consider the decomposable choice property of Grant, Kajii, and Polak
(2000), which in this setting requires the following:

GKP: For any interim payoffs αi, βi and events E ∈ Σi if Ui(αi) > Ui(βiEαi) and
Ui(αi) ≥ Ui(αiEβi), then Ui(αi) > Ui(βi).

To see that this condition satisfies B1, note that if Ui(αi) = Ui(βi) ≥ Ui(αiEβi) for all
E ∈ Σi, then it cannot be the case that Ui(αi) > Ui(βiEαi) for E ∈ Σi. ■

4. Recursive payoffs with multiple priors

In this section, we study a class of games in interim utility form

((Ωi,Σi), Ai,Vi,Ui)
N
i=1 ,

in which players have multiple priors and interim payoffs satisfying B1 and B2, but not
necessarily the conditions in the examples of the previous section. The class includes
Bayesian games as a special case.

Player i has a bounded measurable payoff function

ui : A× Ω → R ,

where the set of action profiles A is endowed with the product Borel algebra and A × Ω
also has the product algebra.

Suppose further that for each i, we are given a set Di of probability measures on Σ.
For each πi ∈ Di we write π̂i for its marginal distribution on Σi and for the distribution
conditional on own types we write πi( · | · ) : Σ−i × Ωi → [0, 1], whereby πi( · |ωi) is a
probability distribution on Σ−i interpreted as the conditional probability distribution on
ωi ∈ Ωi realizing.3

Assume that the ex ante utilities are of the multiple prior form of Gilboa and Schmeidler
(1989) and that Di satisfies the rectangularity property of Epstein and Schneider (2003):

Ui(f) = inf
πi∈Di

∫
Ω
ui(f(ω), ω) dπi(ω)

= inf
πi∈Di

∫
Ωi

inf
νi∈Di

∫
Ω−i

ui(f(ω), ω) d νi(ω−i|ωi) d π̂i(ωi) .

With this separation we let

Vi(ai, f−i|ωi) = inf
νi∈Di

∫
Ω−i

ui(ai, f−i(ω−i), ω) d νi(ω−i|ωi) ,

for each ai ∈ Ai, f−i ∈ F−i and ωi ∈ Ωi. For any interim payoff αi we let

Ui(αi) = inf
πi∈Di

∫
Ωi

αi(ωi) d π̂i(ωi) .

We have obtained an associated game in interim utility form and thus a Savage game.
Our first assumption requires that payoffs be continuous in action profiles.

C1. For each ω ∈ Ω, the function a 7→ ui(a, ω) is continuous.

We shall also make the following assumption.

C2. There is a probability measure µ : Σ → [0, 1] such that

3The existence of such a conditional distribution is always guaranteed when the underlying probability
space is a Radon space. We note that when each Di is a singleton and we are in a Bayesian game setting, the
existence of equilibrium result in this section does not require the decomposability of priors into marginals
and conditionals.



10 GRANT, MENEGHEL, AND TOURKY

(1) Each π ∈ ∪iDi is absolutely continuous with respect to µ.
(2) The marginal distributions of µ over each Σi are all atomless.
(3) For each i the set Di is weak∗ compact in the dual of L∞(Ω,Σ, µ), the space of

real valued µ-essential bounded (equivalence classes) functions on Ω.

In the next assumption we require that the marginal distributions in Di over Σi are
mutually absolutely continuous. Epstein and Marinacci (2007) characterize this condition
for the maxmin expected utility form in terms of a condition of Kreps (1979).

C3. The marginal densities {π̂i : πi ∈ Di} are mutually absolutely continuous.

Proposition 4.1. If the game with multiple priors satisfies C1, C2, and C3, then the
associated game in interim utility form satisfies B1 and B2. In particular, the associated
Savage game satisfies assumptions A1 to A6.

Proposition 4.1 tells us that when C1, C2, and C3 hold, we need only check that A7
holds to apply Theorem 2.8.

5. Location games with recursive payoffs

We now use this convenient recursive structure to investigate two examples of location
games on the sphere. The first is a Bayesian game with payoffs and individual priors that
depend on the full profile of types. In the second game, players have multiple priors.

Bayesian location game. Consider the N -player Bayesian game

((Ωi,Σi), Ai, ui, νi)
N
i=1 ,

where (Ωi,Σi), the measurable space of Player i’s types, is the unit interval [0, 1]. The action
space Ai of each player is the unit sphere Sn in Rn+1. Player i’s prior νi is a probability
density function νi : Ω → R+, which has full support and is Lipschitz continuous.

Let Bn+1 denote the unit ball of Rn+1. The payoff function ui : A× Ω → R of Player i
is given by

ui(a, ω) = γi ∥Pi(ai, ωi)−Ri(a−i, ω)∥2 + (1− γi) ∥Pi(ai, ωi)−Qi(ωi)∥2

with Lipschitz continuous functions Pi : Ai×Ωi → Sn, Qi : Ωi → Sn, Ri : A−i×Ω → Bn+1,
and 0 ≤ γ < 1

2 . We interpret Ri(a−i, ω) as Player i’s idiosyncratic way of calculating the
(generalized) average of the other players’ locations, Qi(ωi) as her most preferred location
given her type ωi, and Pi(ai, ωi) as a (possible, but not required) distortion induced by her
type ωi on the degree of her desire to be close to the other players’ expected location and
her own preferred location. In particular, we allow that Player i may be ‘social’ for some
types, for example, Pi(ai, ωi) = ai, but may be ‘anti-social’ for other types, for example,
Pi(ai, ωi) = −ai. We assume that the inverse correspondence P−1

i : Ai × Ωi → Ai defined
by

P−1
i (ai, ωi) = {a′i ∈ Ai : ai = Pi(a

′
i, ωi)} ,

is non-empty valued and Lipschitz continuous with constant K. That is, for all x, y ∈
Ai × Ωi we have

δ
(
P−1
i (x), P−1

i (y)
)
≤ K∥x− y∥ ,

where δ is the Hausdorff distance between sets in Rn+1.
We shall show that this game has a Bayesian Nash equilibrium (in pure strategies).

Clearly, B1 and B2 hold. By Proposition 3.1 we need only show that A7 is satisfied.
Fix Player i, a strategy profile f−i of other players, and a type ωi ∈ Ωi. For each action

ai, let Vi(ai, f−i|ωi) be the interim expected utility

Vi(ai, f−i|ωi) =

∫
Ω−i

ui(ai, f−i(ω), ω) νi(ω−i|ωi) dλ(ω−i) ,



SAVAGE GAMES 11

where λ is the Lebesgue probability measure on [0, 1]N−1 and

νi(ω−i|ωi) =
νi(ω)∫

Ω−i
νi(ω) dλ(ω−i)

is the conditional probability density of νi on Ω−i.
Let

Mi(a−i, ω) = γiRi(a−i, ω) + (1− γi)Qi(ωi) ,

and
mi(f−i|ωi) =

∫
Ω−i

Mi(f−i(ω−i), ω) νi(ω−i|ωi) dλ(ω−i) .

We see that
ui(a, ω) = ∥Pi(ai, ωi)∥2 − 2⟨Pi(ai, ωi),Mi(a−i, ω)⟩

+ γi∥Ri(a−i, ω)∥2 + (1− γi)∥Qi(ωi)∥2 ,

where for any x, y ∈ Rn+1, ⟨x, y⟩ ∈ R is the inner-product. Thus

Vi(ai, f−i|ωi) = ∥Pi(ai, ωi)−mi(f−i|ωi)∥2 + ∥mi(f−i|ωi)∥2

+

∫
Ω−i

γi∥Ri(f−i(ω−i), ω)∥2 νi(ω−i|ωi) dλ(ω−i) + (1− γi)∥Qi(ωi)∥2.

Noting that ∥mi(f−i|ωi)∥ ≥ 1− 2γi > 0, define the point

qi(f−i|ωi) =
−mi(f−i|ωi)

∥mi(f−i|ωi)∥
,

which is the point on the sphere that is farthest away from mi(f−i|ωi).
Any ai ∈ Ai satisfying qi(f−i|ωi) = Pi(ai, ωi), equivalently, ai ∈ P−1

i (qi(f−i|ωi), ωi),
maximizes Vi(·, f−i|ω−i). In particular, any strategy f∗

i satisfying

Pi(f
∗
i (ωi), ωi) = qi(f−i|ωi) equivalently f∗

i (ωi) ∈ P−1
i (qi(f−i|ωi), ωi)

for all ωi is a best response for Player i to f−i.
Now ω 7→ νi(ω−i|ωi) is a Lipschitz continuous function because the prior νi is a Lipschitz

continuous function that is bounded away from zero. Therefore, ωi 7→ mi(f−i|ωi) is also
a Lipschitz continuous function with Lipschitz constant K ′ that is independent of the
choice of f−i because of the Lipschitz continuity of Qi and Ri. This in turn implies that
ωi 7→ qi(f−i|ωi) is a Lipschitz continuous function with Lipschitz constant K ′′, independent
of the choice of f−i, because γi <

1
2 . Finally, we conclude that the closed non-empty valued

correspondence ωi 7→ P−1
i (qi(f−i|ωi), ωi) is Lipschitz continuous with some constant K∗

that is the same for all f−i. By the theorem of Kupka (2005), this correspondence with one
dimensional domain has a K∗-Lipschitz continuous selection f̂i, which is a best response
to f−i. Letting Xi be the family of K∗-Lipschitz continuous strategies for Player i. By the
Arzelà-Ascoli compactness theorem assumption A7 is satisfied.

Location game with multiple-priors. Consider another N -player location game in
which once again Player i’s type space Ωi is [0, 1] and her action space Ai is the unit
sphere Sn. The player’s payoff function ui : A× Ω → R is

ui(a, ω) =

{
∥ai −Mi(a−i, ω)∥2, if minj ̸=i ωj ≤ 1

2 ,

1, otherwise ;

where Mi : A−i × Ω → Sn is a Lipschitz continuous function. If the type of at least one of
the players other than i is less than or equal to one-half, that is Low, then Player i wishes
to locate on the circle as far away as possible from Mi(a−i, ω), and may get a payoff greater
than one. However, if the type of every player aside from i is greater than a half, that is
High, then Player i has a guaranteed payoff 1.
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We assume the preferences of Player i over strategy profiles take the maxmin expected
utility or “multiple priors” form of Gilboa and Schmeidler (1989). For each i, let λi be
the Lebesgue distribution on Ωi, and let λ be the product distribution on Ω. Let D̂i

be a weakly compact set of probability density functions on Ωi in which each ν̂i in D̂i

is mutually absolutely continuous with λi. Let µ−i : Ω−i × Ωi → R+ and ν−i : Ω−i ×
Ωi → R+ be functions for which ωi 7→ µ−i( · |ωi) and ωi 7→ ν−i( · |ωi) are mappings to
conditional probability densities on Ω−i. We assume that for each fixed ω−i the function
µ−i is Lipschitz continuous in ωi. We also assume that if ω−i is in the support of µ−i( · |ωi),
then at least one player is of Low type. We also assume that for each ωi, the support of
ν−i( · |ωi) is a subset of (12 , 1]

N−1 ⊆ Ω−i.
Now take Di to be the following set of probability densities defined on Ω:

Di = {ω 7→ πi(ωi)(αµ−i(ω−i|ωi) + (1− α)ν−i(ω−i|ωi)) : πi ∈ D̄i, 0 ≤ α ≤ 1} .
The ex ante utility of Player i for the strategy profile f ∈ F is

Ui(f) = min
π∈Di

∫
Ω
ui(f(ω), ω)π(ω) dλ(ω) .

We show that this game has an equilibrium. Since Di satisfies the rectangularity property
this is a game in interim form satisfying C1, C2, C3. By Proposition 4.1 we need only
show that A7 is satisfied.

Since Di satisfies the rectangularity property it follows if ωi is realized for Player i then
the player wants to maximize the interim utility which in this case is given by

Vi(ai, f−i|ωi) = min
π−i∈{µi(·|ωi),νi(·|ωi)}

∫
Ω−i

ui(ai, f−i(ω−i), ω)π−i(ω−i) dλ−i(ω−i) .

For each ωi and f−i let mi(f−i|ωi) be the point

mi(f−i|ωi) =

∫
Ω−i

Mi(f−i(ω−i), ω)µi(ω−i|ωi) dλ(ω−i) .

There is a K that is independent of f−i such that ωi 7→ mi(f−i|ωi) is K-Lipschitz contin-
uous.

Fixing ωi and f−i we notice that for any ai we have∫
Ω−i

ui(ai, f−i(ω−i)µi(ω−i|ωi) dλ(ω−i)

=

∫
Ω−i

∥ai −Mi(f−i(ω−i), ω)∥2µi(ω−i|ωi) dλ(ω−i)

≥ 1 =

∫
Ω−i

ui(ai, f−i(ω−i)νi(ω−i|ωi)) dλ(ω−i)

if and only if
∥ai −mi(f−i|ωi)∥2 ≥ ∥mi(f−i|ωi)∥2.

But there is always a point in Sn satisfying ∥ai −mi(f−i|ωi)∥ ≥ ∥mi(f−i|ωi)∥. Therefore,
the value Vi(ai, f−i|ωi) of such a point ai is one. But the maximum of Vi(ai, f−i|ωi) is
also one. From this we conclude that ai maximizes Vi(ai, f−i|ωi) if and only if ∥ai −
mi(f−i|ωi)∥ ≥ ∥mi(f−i|ωi)∥. In particular, the maximizers of Vi have the following form:

Bi(f−i|ωi) = arg max
ai∈Ai

Vi(ai, f−i|ωi) = {ai ∈ Ai : ⟨ai,mi(f−i|ωi)⟩ ≤ 1
2} ,

for each ωi and f−i.
This is an upper hemicontinuous correspondence from [0, 1] to Sn. That is, there is a

K∗ independently of f−i such that

δ(Bi(f−i|ωi), Bi(f−i|ω′
i)) ≤ K∗|ωi − ω′

i| ,
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for all ωi, ω
′
i, where δ is the Hausdorff distance between sets. By the theorem of Kupka

(2005), this correspondence has a K∗-Lipschitz continuous selection f̂i. Once again apply-
ing the Arzelà-Ascoli theorem yields the desired result.

6. Concluding remarks

We conclude with a discussion of some issues related to the results we have derived in
the framework of Savage games.

Universal state space. One question that we do not attempt to answer in this paper
is whether it is possible to construct a state space that is a comprehensive representa-
tion of the uncertainty faced by players, in the sense of Mertens and Zamir (1985) and
Brandenburger and Dekel (1993). We note that Epstein and Wang (1996) do provide such
foundations for a setting with purely subjective uncertainty and where the preferences of
players need not conform to subjective expected utility theory and so may exhibit non-
neutral attitudes toward ambiguity. However, Epstein and Wang’s setting does not allow
for interdependent preferences. Bergemann, Morris, and Takahashi (2011) construct a
universal type space for players with interdependent preferences, but as their framework
explicitly involves objective randomization, it is not clear to us how their analysis could
be conducted in a Savage setting of purely subjective uncertainty. Finally, Di Tillio (2008)
allows for more general preferences, albeit in a setting in which there is only a finite number
of outcomes.

Rationalizability. It is also not clear to us what is the appropriate notion of rationaliz-
ability in the framework of Savage games. There is an extensive literature that provides
foundations for equilibrium in terms of rationalizable behavior, see for example Branden-
burger and Dekel (1987) in the context of subjective uncertainty, Tan and Werlang (1988)
and Börgers (1993). However, in many of these papers, rationality is expressed in terms of
“state-independent expected utility.”4

To allow for state-dependent ordinal preferences, an alternative notion of rationalizabil-
ity is needed. As noted by Morris and Takahashi (2012), rationalizability defined in terms of
ordinal preferences is invariant to the choice of state space, unlike rationalizability defined
in terms of expected utility. However, Morris and Takahashi’s notion of rationalizability
requires explicit randomization of the kind implied by Anscombe–Aumann acts, which
is not available in our setting. Epstein (1997) investigates rationalizability in a setting
where strategies are analogs of Savage style acts, nevertheless he rules out state-dependent
preferences and restricts the analysis to finite normal form games.

Purification of mixed strategies. We have entirely avoided any assumption on the
independence or near independence of player information or types or payoffs. Indeed,
in our Bayesian game example, types are statistically dependent via arbitrary Lipschitz-
continuous probability density functions. This is in stark contrast with the purification
results that follow the classical work of Dvoretzky, Wald, and Wolfowitz (1950), Radner
and Rosenthal (1982) and Milgrom and Weber (1985), and related literature.5 One inter-
pretation of this difference is that while decomposability arguments are also at the heart
of purification techniques, those require purification of objectively randomized equilibria.
The present paper highlights how our use of the decomposition property can be interpreted
as purification of a purely subjective kind.

4An exception is Tan and Werlang (1988), who start with a Bayesian game in which players have a
state-dependent subjective expected utility function.

5Other results include Balder (1988), Khan and Sun (1995), Balder (2002), Khan, Rath, and Sun
(2006), Loeb and Sun (2006), Balder (2008), Podczeck (2009), Loeb and Sun (2009), Khan and Rath
(2009), Yannelis (2009) and Wang and Zhang (2012).
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An important open question is whether it is possible to obtain our results even for stan-
dard Bayesian games with interdependent priors using the purification techniques of the
extant literature. That literature has focused on the existence of pure-strategy equilibrium
in Bayesian games in which information is diffuse. The usual approach is to identify con-
ditions on the information structure of the game that allows us to find a profile of pure
strategies that is payoff equivalent to any given equilibrium (randomized) strategy profile.
To the best of our knowledge, the techniques that have been developed so far rule out
interdependent payoffs and require independent distributions of types.

Games with a separable structure. In general, a Savage game cannot be represented as
a Bayesian game. This remains the case, even if there exists an associated game in interim
utility form that not only satisfies B1 and B2, but the ex ante utilities of the players are
additively separable across states. The difficulty stems from the state-dependence of the
players’ preferences, which prevents a meaningful separation of beliefs from payoffs (see
Karni (1985), Wakker and Zank (1999), and Debreu (1960) for the single decision maker
case). Thus it remains an open question as to when can we meaningfully disentangle
preferences from beliefs in a Savage game. We outline one approach as our final remark.

Aumann (1974) proposed a class of games with a separable structure to study equilibrium
under objective and subjective uncertainty.6 In this setting, we are able to disentangle
subjective beliefs from preferences and thus represent these games as Bayesian games with
individual priors. We describe a generalization of the class of games studied by Aumann.7

A game with a separable structure is an N -player game given by the following tuple:

((Ωi,Σi), Oi,≿i, Ai, ζi)
N
i=1 .

Player i is associated with a set of states, Ωi, and a σ-algebra Σi of subsets of Ωi. She
also has an outcome space Oi, which we take to be a metric space. The space Ω = ×N

i=1Ωi

has the product algebra Σ = ⊗N
i=1Σi. An act for Player i is a Σ-measurable function

y : Ω → Oi. Let Yi denote the set of Player i’s acts. Player i has a preference ordering ≿i

on the family of acts Yi. Player i has an action set Ai, which is a compact metric space
and a measurable outcome function ζi : A × Ω → Oi, which associates action profiles and
state profiles with outcomes. An important difference between this framework and that
of Aumann (1974) is that Aumann’s outcome function is state independent, that is, it is
simply a function from A to Oi.

A strategy for Player i is a Σi-measurable function fi : Ωi → Ai. Let Fi denote the set
of Player i’s strategies. Each strategy profile f ∈ F is a Σ-measurable function from Ω to
A so there is an induced preference relation ≿∗

i on F given by

f ≿∗
i g iff ζi ◦ f ≿i ζi ◦ g .

The Savage game induced from this game with a separable structure is thus:

(Ω, Ā, (F̄i,≿∗
i )

N
i=1) ,

where Ā is the disjoint union of the sets Ai, F̄i = {f̄i : fi ∈ Fi} for each i, and f̄ ≿∗
i ḡ if

and only if f ≿∗
i g.

Returning to the game with a separable structure, assume now that for each i there is
a probability measure πi : Σ → [0, 1] and a function vi : Oi → R such that

Vi(y) =

∫
Ω
vi ◦ y(ω) dπi(ω) ,

6Aumann and Dreze (2005) develop a related idea in which subjective risk in a game uses available
strategies. See also Section 8 of Hammond (2004).

7Incidentally, a by-product of such an extension is that, in addition to the standard Bayesian equilibrium
notion, Savage games can also be seen to constitute a suitable framework to investigate the existence of
(subjectively) correlated equilibrium.
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represents ≿i over acts for every i. This is the case for example when ≿i satisfies all
of Savage’s postulates and the “monotone continuity” assumption of Arrow (1971) that
guarantees that πi is countably additive. Setting ui(a, ω) := vi ◦ ζi(a, ω) and letting

Ui(f) =

∫
Ω
ui(f(ω), ω) dπi(ω)

for each f ∈ F we see that Ui is a utility representation of ≿∗
i . We have thus obtained the

N -player Bayesian game
((Ωi,Σi), Ai, ui, πi)

N
i=1 .

Appendix A. Proofs

Proof of Proposition 2.1. Suppose that f ∼i (gi, f−i) ≿i (giEfi, f−i) for every E ∈ Fi. For
any E ∈ Fi we have f ≿i (giΩ\Efi, f−i), thus, by P2, fiΩ\Egi, f−i ≿i (gi, f−i) ∼i f . □

Proof of Proposition 2.2. It is immediate that Fi contains ∅ and Ω. The other two condi-
tions are obtained by noting that

giE\E′fi = fiE′(giEfi) ,

and
giE∪E′fi = giE(giE′fi) .

With this, A3 guarantees that the countable union of events is an event. □

Proof of Corollary 2.3. Let σ(Fi) be the smallest σ-algebra of subsets of Ω for which each
strategy fi ∈ Fi is measurable. Clearly, σ(Fi) ⊆ Σi ⊆ Fi. Pick E ∈ Fi. Because |A| ≥ 2,
there are fi, gi ∈ Fi such that E = {ω : giEfi(ω) ̸= fi(ω)}, which is in σ(Fi). Thus, Σi = Fi

and A3 holds. □

Proof of Proposition 2.4. Clearly, the empty set is in Ni. Let E ∈ Ni and E′ ∈ Fi such
that E′ ⊆ E. If E′ /∈ Ni, then there are f ∈ F , gi ∈ Fi and j ∈ N satisfying

(giE′fi, f−i) ̸∼j f .

But then
((giE′fi)Efi, f−i) = (giE′fi, f−i) ̸∼j f ,

which is a contradiction, because E is null for Player i.
Furthermore, if E,E′ ∈ Ni, then for any gi ∈ Fi, by transitivity of ∼j , we have

(giE∪E′fi, f−i) = (giE′(giEfi), f−i) ∼j (giEfi, f−i) ∼j f ,

which tells us that E ∪E′ ∈ Ni. Finally, by A3 and A4, for any increasing sequence of null
events En, the union E is an event, and it must be null for Player i. □

Proof of Proposition 2.5. We can assume without loss of generality that each Sm
i also

has the the property that if E′, E ∈ F and E′ ⊂ E ∈ Sm
i , then E′ ∈ Sm

i .
Fix Sm

i . Denote by E ⊖ E′ the symmetric difference of any two sets E,E′ ⊆ Ω. Let

Rm
i = {E ∈ Ri : E ⊖ E′ /∈ Ni for all E′ ∈ Sm

i } .

Proposition A.1. The following hold true:
(1) If E ∈ Rm

i , then E /∈ Sm
i .

(2) ∪mRm
i = Ri.

(3) If En is an increasing sequence of events whose union E is in Rm
i , then eventually

En is in Rm
i .
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Proof. (1) is obvious because the empty set is in Ni.
Turning to (2). Suppose that E ∈ Ri. Suppose by way of contradiction that E /∈ Rm

i
for all m. E is associated with Em ∈ Sm

i such that Dm = E ⊖Em ∈ Ni. Let D = ∪mDm,
which is in Ni and we see that E \D ⊆ Em for all m. Thus, E \D ∈ Sm

i for all m. This
implies that E \D is in Ni. Thus, E ∈ Ni, which is a contradiction.

For (3) because Ni is a σ-ideal, eventually En is in Ri. Now if En /∈ Rm
i then there exists

a null event D such that En ∩D is in Sm
i for all m. By the closedness of Sm

i E ∩D ∈ Sm
i

which is impossible. □

If all Rm
i are empty, then all events are null and the proposition is true trivially. So we

can assume that Rm
i in not empty for all m.

Proposition A.2. For each m there is c > 0 such that

inf
E∈Ni

max
ω∈Ω

(
χΩ\E

n∑
k=1

αkχEk(ω)

)
≥ c

for any α1, . . . , αK ≥ 0 and
∑K

k=1 α
k = 1.

Proof. There exists a constant c > 0 such that for any finite sequence E1, E2, . . . , En in
Rm

i we have

max
ω∈Ω

1

n
|{1 ≤ k ≤ n : ω ∈ Ek}| > c .

This implies that

max
ω∈Ω

1

n

n∑
k=1

χEk(ω) > c

where χE is the characteristic function of E. This in turn implies that

max
ω∈Ω

n∑
k=1

rk∑n
k=1 r

k
χEk(ω) = max

ω∈Ω

1∑n
k=1 r

k

n∑
k=1

rkχEk(ω) > c ,

for every rk ∈ N, k = 1, . . . , n, satisfying rk > 0 for some k. We conclude that

max
ω∈Ω

n∑
k=1

αkχEk(ω) ≥ c ,

for any convex combination α1, α2, . . . , αn ≥ 0,
∑n

k=1 α
k = 1. Therefore,

(1) inf
E∈Ni

max
ω∈Ω

(
χΩ\E

n∑
k=1

αkχEk(ω)

)
= inf

E∈Ni

max
ω∈Ω

n∑
k=1

αkχEk\E(ω) ≥ c ,

for any convex combination. □

Let L∞(Fi|Ni) be the ordered vector space of all Ni-equivalence classes of Fi-measurable
bounded functions from Ω to R. That is, fi : Ω → R is in L∞(Fi,Ni) if it is Fi-measurable
and bounded, and gi : Ω → R is in the equivalence class [fi] if {ω : fi(ω) ̸= gi(ω)} is in Ni.

For each fi ∈ L∞(Fi|Ni), let

∥fi∥∞ = inf
E∈Ni

sup
ω∈Ω

|χΩ\Efi(ω)| ,

By Proposition 2.4 Ni is a σ-ideal of Fi. Thus ∥ · ∥∞ is a norm on L∞(Fi|Ni), and with
this norm the space is a Banach space. Furthermore, L∞(Fi|Ni) has a canonical ordering
whereby fi ≥ gi if {ω : gi(ω) > fi(ω)} is null. With this vector ordering the Banach space
L∞(Fi|Ni) is a Banach lattice with a positive cone L+

∞(Fi|Ni) that contains any constant
function c = cχΩ, c > 0, in its interior.

We list the following result for convenience.



SAVAGE GAMES 17

Proposition A.3. There exists c > 0 such that the for any f convex hull Cm in L∞(Fi|Ni)
of {χE : E ∈ Rm

i } we have ∥f∥∞ ≥ c. In particular, Cm is disjoint from 1
2c−L+

∞(Fi|Ni).

A separating hyperplane argument now tells us that there is a continuous linear func-
tional πm

i on L∞(Fi|Ni) separating the two sets. Because zero is an interior point of
one set we see that it is non-negative on L+

∞(Fi|Ni) and that for some dm > 0 we have
πm
i (fi) > dm for all fi ∈ Cm.
We can therefore consider πm

i as a finitely additive measure on Fi. It gives a value
of zero to each E ∈ Ni and greater than dm for each E ∈ Rm

i . By the Hewitt-Yosida
decomposition there is a countably additive measure πmc

i and a purely finitely additive
measure πmf

i such that
πm
i = πmc

i + πmf
i .

Pick E ∈ Rm
i . Because πmf

i is purely finitely additive, for dm > α > 0 there is an increasing
sequence En ∈ Fi, ∪nE

n = E, and

lim
n

πmf
i (En) ≤ α .

But En ∈ Rm
i eventually for n large enough. From this we conclude that for such n

πmc
i (E) ≥ πmc

i (En) = πm
i (En)− πmf

i (En) ≥ γm − α > 0 .

Normalize each πmc
i making it a probability measure and consider the probability measure:

πi =
1

2m

∞∑
m=1

πmc
i (E) .

We see that πi(E) > 0 for each E ∈ R = ∪mRm
i . That is, πi is the required measure. □

Proof of Proposition 2.6. Suppose that E ∈ Ri. For some player j ∈ N , some strategy
profile f ∈ F , and some strategy gi ∈ Fi we have (giEfi, f−i) ̸∼j f . Thus, there exists a
sequence {E1, . . . , Ek} ⊆ Fi, ∪kE

k = Ω, satisfying (fiEk(giEfi), f−i) ̸∼j f for all k. But
fiEk(giEfi) = giE\Ekfi. Thus, for all k the event E \ Ek is in Ri. Also, because Ni is an
ideal there must be some k∗ such that Ek∗ ∩E is relevant for Player i. The relevant events
E \Ek∗ and Ek∗ ∩ E are disjoint and their union is E. □

Proof of Proposition 2.7. We need only show that (2) implies (1). Let πi be from
condition (2). If πi(Ω) = 0, then we are done, since there are no relevant events. Otherwise,
without loss of generality we can assume πi(Ω) = 1.

For each m, define the set

Sm
i = {E ∈ Fi : πi(E) ≤ 1/m} .

Notice that each Sm
i is closed and note that ∩mSm

i ⊆ Ni.
Now let E1, E2, . . . , En is a finite sequence in Fi not in Sm

i . We have

max
ω∈Ω

1

n
|{1 ≤ k : ωi ∈ Ek}| = 1

n
max
ω∈Ω

n∑
k=1

χEk

≥ 1

n

∫
Ω

n∑
k=1

χEk(ω) dπi(ω)

=
1

n

n∑
k=1

πi(E
k)

≥ 1

n
(n

1

m
) =

1

m
.

This shows that A5 holds.
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We show that A6 also holds. Suppose that (gi, f−i) ̸∼j f . Suppose by way of contra-
diction that for each m there is Em satisfying πi(E

m) ≤ 1
m such that (hiEmgi, f−i) ∼j f .

Noting that χEm converges to zero in πi-measure we can move to a subsequence such that
χEm converges πi-almost surely to zero. But zeros of πi are all null for Player i. Thus, by
A4 (gi, f−i) ∼j f , which is a contradiction. □

A fixed point theorem. We begin with a statement of a fixed point theorem and apply
it to prove Theorem 2.8. For a complete proof of the fixed point theorem used in this
subsection, please refer to Meneghel and Tourky (2013).

Let (S,Σ, µ) be an atomless probability space and let T be a topological space. Let
L(S, T ) be the set of all functions, not necessarily measurable, from S to T . Endow
L(S, T ) with the topology of pointwise convergence.

A set-valued (possibly empty valued) mapping B : F ↠ F is a decomposable mapping
if its domain F and values B(f), for all f ∈ F , are decomposable sets. A decomposable
mapping B is µ-sequentially closed graphed if the following hold:

(1) If µ(E) = 0 and g ∈ B(f), then hEg ∈ B(f) and g ∈ B(hEf) for all h ∈ F .
(2) F is sequentially closed in L(S, T ).
(3) B has a sequentially closed graph in F × F .

A fixed point of B is a function f ∈ F satisfying f ∈ B(f).

Theorem A.4 (Corollary 2.3, Meneghel and Tourky (2013)). Let B : F ↠ F be a decom-
posable µ-sequentially closed-graphed mapping. If for a compact and metrizable X ⊆ F
we have X ∩B(f) ̸= ∅ for each f ∈ F , then B has a fixed point.

Proof of Theorem 2.8. Assume that A7 holds.
For each i let Si = Ω and Ti = A. Each f ∈ F is can be considered a function from S

to T whereby
f(s1, . . . , sN ) = (f1(s1), . . . , fN (sN )) .

For each i consider the atomless measure space (Si,Fi, πi) from Proposition 2.7. We will
assume that at least one player has a relevant event and that all non-zero πi are probability
measures. Let F = ⊗N

i=1Fi be the tensor product. Each E in F that is not the empty set
is of the form

(E1, E2, . . . , EN ) ,

where Ei ∈ Fi for each i. Now if f, g ∈ F , then

gEf(s1, . . . , sN ) = (g1E1f1(s1), . . . , gNEN
fN (sn)) ,

which is in F .
Let µ : F → [0, 1] be the probability measure given by

µ(E) =
1

N

N∑
i=1

πi(Ei) .

This, is an atomless measure and if µ(E) = 0, then each Ei is null for Player i. For each
f ∈ F , let

B(f) = {g ∈ F : gi is a best response to f−i for all i} .
Notice that if µ(E) = 0 and g ∈ B(f) we have hEg ∈ B(f) and g ∈ B(hEf).

Now our sets Xi are compact and metrizable in the topology of pointwise convergence.
Therefore, their product X ⊆ F is compact and metrizable in the same topology. Assume
first that there is only one player. Clearly, an equilibrium exists because the player max-
imizes her preferences in the compact and metrizable set X. Now suppose that there are
two or more players. By assumption A7, the sequentially closed, decomposable set X̃i is
a subset of Fi for each i. Let X̃ be the product of Xi, which is sequentially closed and
decomposable once again. Let B̃ : X̃ → X̃ be the restriction of B to X̃. We see that B
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is a decomposable mapping that is also µ-sequentially closed graphed. Applying Theorem
A.4 gives us the required equilibrium.

For the converse, if f is an equilibrium, then letting Xi = {fi} for each i and noting
that because single points in A are closed, we have that X̃i = Xi, A7 holds. □

Proof of Proposition 3.1. Suppose that f ∈ F and gi ∈ Fi satisfy

Ui(f) = Ui(g) ≥ Ui(giEifi, f−i)

for all Ei ∈ Σi. By B1 this means that

Ui(giEifi, f−i) = Ui(Vi(giEifi, f−i)) = Ui(Vi(gi, f−i)EiVi(f)) = Ui(Vi(f)) = Ui(f)

Ei ∈ Σi. Thus, A2 holds.
That A3 is satisfied is a consequence of Corollary 2.3.
Now Ui is continuous for pointwise convergent sequences of strategy profiles by B2. So

A4 holds.
If A has less than two points, then all events are null and A5 and A6 hold trivially. If

they have two or more points, then by Corollary 2.3 Σ̄i = Fi. Now the restriction of µi to
Σ̄i is atomless and if µ(E) = 0, then E is null for Player i by (2) of B2. By Proposition
2.7 assumptions A5 and A6 hold. □

Proof of Proposition 4.1. Consider the associated game in interim form. Clearly, B2 holds.
For B1 let αi, βi be the two interim payoffs. Choose µ∗

i ∈ Di in

arg min
µi∈Di

∫
Ωi

αi ∨ βi d µ̂i(ωi) .

We see that

Ui(αi) ≥ Ui(αi ∨ βi) ≥
∫
Ωi

αi(ωi) d µ̂
∗
i (ωi) ≥ Ui(αi) .

Thus, it must be the case that αi and αi ∨ βi agree µ∗
i -almost surely. Similarly, βi and

αi ∨ βi agree µ∗
i -almost surely. This implies that αi and βi agree almost surely for all

µi ∈ Di. This implies that Ui(βiEαi) = Ui(αi) for all Ei ∈ Σi, as required. □
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