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Abstract

Classical models of ordinal utility, such as those of Debreu and
Eilenberg, are context-free in the sense that a single preference relation
is primitive. A common theme of behavioural economics is to employ
context-dependence as a way of characterising observed behaviour in
decision problems and games. Prospect theory, case-based decision
theory and decisions with unawareness are all examples. An axiomatic
model of linear context dependence, with a cardinal utility function
for each context, has been developed relatively recently in Gilboa and
Schmeidler’s theory of case-based decisions. The present paper seeks
to address the need for a corresponding ordinal, nonlinear theory of
context-dependent utility.
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1 Introduction

2 Model and Results

2.1 Preferences

The primitives of the model consist of two nonempty sets A and X . Let X
denote a set of possible contexts or situations at which the decision maker,
Val, might face the problem of deciding amongst certain alternatives. To

simplify the exposition, the set A of alternatives is assumed to be the same
at each context. In the present, general setting, the question of whether Val
is aware of X or her whereabouts in X is left unspecified, but it is assumed

that once a context is fixed, some form of ranking of the alternatives
according to what she prefers is feasible. That is, for a given context x, and
alternatives a and b, she will be able to state whether or not she “strictly

prefers” a to b .
Thus for each x in X, Val’s preferences are described by a (context)

preference relation ąx which formally is a subset of Aˆ A .1 This gives rise
to a collection of preference relations tąx: x P Xu, so that the variation of
preference, for one alternative over another, across contexts is explicitly

modelled. Where necessary, the more expressive notation tpA,ąxq : x P Xu
is used instead, and brevity favours tąxuX when its status is unambiguous.
The term context preferences will also refer to this collection of individual

context preference relations.2

The situation where, for a given context x and pair of alternatives a and b,
Val’s preferences are such that neither a ąx b, nor b ąx a, is denoted by

a „x b . This situation could just as well be described by b „x a . Thus the
relation „x is symmetric, and given standard conditions, which are stated
below, it is an ‘equivalence’ relation that characterises indifference between

alternatives.
As discussed in the introduction, context preferences exclude any preference
statements that Val may in fact be in a position to make regarding pairs of
contexts, or indeed between one alternative-context pair and another. This
information is intentionally ignored so that no assumption need be made
concerning preferences over such objects. n some cases, more can be said

1I choose this approach, where strict as opposed to a weak preference relation ąx

is primitive, because strict preference is unambiguous in its meaning. It is adopted in
standard texts such as Fishburn Fishburn (1979) and Kreps Kreps (1988), and convincingly
motivated by Adams Adams (1965).

2The term context preferences is chosen due to similar terminology being used when
state or time preferences are modelled.
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about the .3 Perhaps the best way to understand the approach is in terms
of multiple epistemological viewpoints, each pertaining to a context: there

are no hidden independence assumptions, indeed the intention is to say
something about how preferences vary across contexts

2.2 Axioms and the Context space

Recall that, for each x in X, we have defined „x so that a „x b if and only
if strict preference fails to hold in either direction. As a result, the standard
assumption of completeness of the weak preference relation Áx:“ąx Y „x is

automatically satisfied, and in this case the following condition is simply
the contrapositive of “transitivity of weak preference”.4

Axiom (Ordering of alternatives (Ord.)).
For all a, b and c in A and x in X, if a ąx c, then a ąx b or b ąx c .

Axiom (Continuity across contexts (Cac)).
For all a and b in A, and x in X, if a ąx b, then there exists an open set of
contexts O such that x P O, and for every y in O, we have a ąy b .

Note that continuity has the intuitive appeal that it characterizes the
stability of strict preferences. That is stability with respect to

perturbations in the context space.
If we were to translate the family of preference relations Γ into a single,

incomplete preference relation Á˚ using the following definition:

pa, xq Á˚
pb, yq ô a Áx b and x “ y,

then by theorem 2 of Evren and Ok (2011) conditions (Ord.) and (Coa) are
sufficient for a multi-utility representation. However, in for the purposes of
a characterizing context-dependent preferences, that is not enough, we are
interested in a rather special function. For each context, we seek a distinct

utility function that characterizes a preference relation at that context.
Moreover, as the context varies, the function we obtain should preserve the

properties that preferences satisfy as the context varies.
Finally, I introduce an axiom that is not a necessary condition for the

representations that are obtained, but it is needed in the sufficiency proofs
provided.

3In the language of measurement theory (see d’Aspremont and Gevers (2002) for a
recent survey) context preferences are low in the information hierarchy.

4Recall, completeness says that for all a, b and x, either a is weakly preferred to b at
x or vice versa; whereas transitivity says that a Áx b Áx c implies a Áx c .
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Axiom (Jaffray order-separability across contexts (Sep.)).
There exists a countable subset C of A such that for all alternatives a and b
in A with a ąx b, we have

a Áx c ąx d Áx b for some c and d in C

The main theorem holds for topological context spaces that are perfectly
normal. A space X is said to be normal if for every pair of disjoint closed

subsets of X there exist disjoint open sets containing A and B respectively.
Then a topological space X is perfectly normal if for every set C that is

closed in X, there exists a real-valued function f such that C “ f´1p0q . An
equivalent definition is that every such C can be written as a countable

intersection of sets that are open in X (Munkres (2000) p.229). The
following theorem is a recent, intuitive restatement of Michael’s Michael
(1956) selection theorem due to Good and Stares (2000). It provides a

useful characterisation of perfectly normal topogical spaces.

Theorem 2.1 (Michael’s selection theorem). The following two statements
are equivalent.

1) X is a perfectly normal topological space.

2) If g, h : X Ñ R are upper and lower semi-continuous respectively and
g ď h, then there is a continuous f : X Ñ R such that g ď f ď h and
gpxq ă fpxq ă hpxq whenever gpxq ă hpxq .

This equivalence is relevant for preferences that are indexed by elements of
a context space because if the context space is not perfectly normal then

there exist g, h : X Ñ R that are upper (resp. lower ) semi-continuous and
g ď h, such that for no continuous f : X Ñ R do we have g ď f ď h and
gpxq ă fpxq ă hpxq whenever gpxq ă hpxq . This, as we will see in the proof

of our theorem and subsequent discussion, would imply that there exists
context preferences tpA,ąxq : x P Xu that are continuous across contexts
such that there is no representation U : AˆX Ñ R satisfying continuity

across contexts.
Note that for countable S the simplex of probability measures ∆ on S is a
subspace of RS, which is a ‘Hilbert space’ under the standard Euclidean
metric, so that by Steen and Seebach (1970) p.65, ∆ is a metric space.

Then by Munkres (2000) p. 229 every metrizable space is perfectly normal.
Thus for countable S, ∆ is a suitable context space. This is not true for
uncountable S, by counterexample 105, on p125 of Steen and Seebach

(1970).

5



Another example of a context space in the literature is any countable
product of the discrete space of non-negative integers with the Cartesian
product topology as is found in the case-based decision theory of Gilboa

and Schmeidler Gilboa and Schmeidler (2001, 2003). By Steen and Seebach
(1970) p.121, this is a complete metric space, and so this too is a suitable

space of contexts for a nonlinear representation. On the other hand,
uncountable products of the nonnegative integers with the product

topology are, by counterexample 103 of Steen and Seebach (ibid.), not
normal spaces, and so they may be unsuitable depending on preferences.

2.3 Results

The representation we are seeking is of the following form.

Definition 2.1.
U : A ˆX Ñ R is said to be a context utility representation of preferences
tpA,ąxq : x P Xu if for all a, b P A and x P X,

a ąx b ô Upa, xq ą Upb, xq .

U is ordinal if, for any other representation V of preferences, there exists a
family of strictly increasing functions tfx : RÑ RuxPX such that for each x,
Vp¨, xq “ fx ˝ Up¨, xq .

Definition 2.2. [Continuity of the representation]
A context utility function U : AˆX Ñ R is said to be

1) “continuous across contexts” if, for each a in A, Upa, ¨q is continuous
on X; and

2) “continuous over alternatives” if, for each x in X, Up¨, xq is continuous
on A.

U is “separately continuous” on AˆX if both (1) and (2) hold.

Remark 2.1. Note that in definition (2.1), the continuity of f : XˆRÑ R
on X is implied by continuity across contexts of the functions U and V .

I now state and prove the main theorem, which via Jaffray (1975), is
equivalent to Birkhoff (1948) for the case where X is a singleton.

Theorem 2.2. Let A be a nonempty set of alternatives and let X be a
nonempty perfectly normal topological space of contexts. Then (1) implies
(2), where:
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1) context preferences tpA,ąxq : x P Xu satisfy (Ord.), (Cac) and (Sep.);

2) context preferences have an ordinal context utility representation that
is continuous across contexts.

The proof of this theorem proceeds via the following steps:
I. Obtain a Cac representation for countable A.

II. Using the representation in (I) to construct a representation for general
(uncountable) A that is upper semicontinuous across contexts.

III. Delete the discontinuities of the representation in (II) using a uniform
convergence method.

Proof. Part I of the proof follows from theorem 2.2 of O’Callaghan (2013).
Parts II and III now follow.
Part II
Let C :“ tc1, c2, c3, . . . u be the countable subset of A satisfying condition
(Sep.). By theorem 2.2 of O’Callaghan (ibid.) there exists a function V :
C ˆX Ñ p0, 1q such that for all i, j in N and x in X,

ci ą cj ô Vpci, xq ą Vpcj, xq

For each x P X, and i P N, let Dipxq :“ ta P A : a Áx ciu , and let

fipa, xq :“ χDipxq
paqVpci, xq,

where for each D Ă A, χD is the indicator function of the set D. That is,
χDpaq “ 1 if a P D, and 0 otherwise.
For each a P A and x in X, let

gpa, xq “
ÿ

iPN
2´ifipa, xq.

***Introduce the following steps***

Lemma 2.1. For each a in A, gpa, ¨q : X Ñ R is upper semicontinuous
(henceforth usc).

Proof of lemma 2.1. Suppose that gpa, ¨q is not usc at x1. Then

l “ lim sup
yÑx1

gpa, yq ą gpa, x1q “ k,

so fix 0 ă ε ă l ´ k. Note that by definition,

tx : χDipxq
paq “ 1u “ tx : a Áx ciu
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and by condition (Cac), these are closed sets. Then since the finite sum of
usc functions on X is also usc on X, the partial sum

gnpa, ¨q “
ÿ

iďn

2´ifipa, ¨q

is usc for each n. By virtue of the fact that gnpa, ¨q is increasing in n and
limn gnpa, x

1q “ gpa, x1q “ k, we have gnpa, x
1q ď k for each n. By usc, the

set
Kn “ ty : gnpa, yq ě k ` ε{2u

is closed, and its complement, XzKn is open and contains x1 for each n. Note
that for all y in XzKn, gnpa, yq ă k ` ε{2. Thus,
Consider the tail sum τnpa, ¨q :“ gpa, ¨q ´ gnpa, ¨q. Since fipa, ¨q takes values
in r0, 1s

sup
xPX

τnpa, xq ď
ÿ

iąn

2´i “
ÿ

iě0

2´i ´
ÿ

iďn

2´i “
1

1´ 2´1
´ p2´ 2´nq “ 2´n.

Thus, there exists n1 P N such that τnpa, ¨q is uniformly dominated on X by
ε{2 for all n ě n1.
The proof of the lemma then follows by taking any n ě n1 and noting that
for all y P XzKn,

gpa, yq “ gnpa, yq ` τnpa, yq ď k ` ε ă l,

so that lim supyÑx1 gpa, yq cannot equal l, which is the desired contradiction.

By Mehta (1998) and gp¨, xq : AÑ R is a utility representation of ąx . Next
we need to show that

Lemma 2.2. gpa, xq ą gpb, xq implies that lim infyÑx gpa, yq ě lim supyÑx gpb, yq “
gpb, xq.

Proof of lemma 2.2. Take any a, b and x such that a ąx b. Note that

l :“ gpb, xq ”
ÿ

tfipb, xq : b Áx ciu.

By (NT) for all i P N such that b Áx ci, there exists Oi, open in X, such
that x P Oi and for all y P Oi, a ąy ci. Since a finite intersection of open
sets is open, lim infyÑx gpa, yq ě l whenever there are only finitely many i
such that b Áx ci. Suppose there are infinitely many such i. By (Sep.),
there exists m and n such that a Áx cm ąx cn Áx b. In the worst case,
a “ cm and b “ cn, and pcn, cmq is an order gap (an empty “interval” in
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pA,ąxq). But even then, since cm ąx cn, there exists O1, containing x, such
that fmpcm, yq “ 1 ą 0 “ fmpcn, yq for all y P O1. By the argument for the
finite case, for each k ě m the partial sums satisfy

lim inf
yÑx

gkpa, yq ą gkpb, xq “: lk,

where tlku is a monotone sequence converging from below to l. By complete-
ness of the reals, and the fact that for all k

lim inf
yÑx

gpa, yq ě lim inf
yÑx

gkpa, yq,

we have the desired inequality.

Lemma 2.2 shows that for each a, the set

tr P R : lim inf
xÑy

gpa, yq ă r ă lim sup
xÑy

gpa, yq “ ga, xqu

is either an open subset of some Debreu-gap in the set gpA, xq, or it is empty.
This property is crucial for Part III of the proof that now follows.
Part III
First, by *** of Choquet () that the oscillation σ of gpa, ¨q is usc. This implies
that the set

tx : σpa, xq ě ku

is closed. This together with the fact that X is perfectly normal allows us to
define a function that vanishes precisely on such sets.

3 Motivation

Joint continuity is a condition on the topology preferences themselves, it is
not an observable, in contrast with X. In most examples, the modeller will
be able to check for herself whether or not X is perfectly normal and decide
when it seems reasonable to assume (Cac) and (Sep.) prior to beginning an

experiment, say. The joint continuity model is rather different in this
respect, for it requires that the modeller make assumptions about . As a
result, continuity across contexts, which applies directly to the space X,

Example showing that one cannot approximate the lower envelope relative
to a with lower semi-continuous functions in the transfinite case.

4 Conclusion

there
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