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1 Introduction

As former US Secretary Donald Rumsfeld (2002) famously observed, the problem of unknown

unknowns (things we don’t know we don’t know) is one of the most diffi cult facing any decision-

maker. In standard decision-theoretic frameworks, the set of possible states of nature is known at

the beginning of the problem. Learning consists of observing signals that restrict the set of possible

states. Probabilities are then updated according to Bayes’rule. In reality, however, decisionmakers

are frequently presented with ‘surprises’, that is, events they had not previously considered. So, a

realistic model of choice under uncertainty must incorporate the fact that individuals are unaware

of some relevant possibilities. Similarly, in a game-theoretic context, at any given stage in an

extensive-form game, some players may be unaware of possible moves of which other players are

aware. Furthermore, sophisticated individuals will understand that there may be possibilities of

which they are unaware, even though they cannot express this understanding within the state-

space model of the world available to them.

The argument of this paper is twofold. First, we show that, even when standard game-theoretic

and decision-theoretic models are extended to include unawareness and differential unawareness,

these standard concepts of belief, knowledge and awareness cannot encompass the idea that indi-

viduals understand their own bounded awareness. This lack of self-awareness persists even in a

dynamic and interactive setting, where individuals are aware of both their own past unawareness

and the bounded awareness of other individuals. We conclude that a reasonable model of individ-

uals with a sophisticated understanding of their own bounded awareness must incorporate modes

of reasoning other than deductive inference based on a fully specified state space or dynamic game

tree.

Second, we argue that, in a dynamic interactive setting, it is natural to employ inductive

reasoning to justify inferences about one’s own awareness and unawareness. In particular, since

everyone has the experience of becoming aware of propositions and possibilities they have not

previously considered, standard principles of historical induction suggest that similar experiences

will occur in the future, and therefore that there exist propositions of which we are currently

unaware. Similarly, in a game with awareness, described by a syntactic structure, individuals

believe that others are unaware of at least some possible histories and the associated propositions.

Inductive reasoning suggests that the same will be true of all individuals, including the person

drawing the inference.

It follows that reasonable, but boundedly rational, individuals, should not rely solely on stan-

dard Bayes-Nash reasoning to guide their decisions, whether these decisions involve games with

Nature or interactions with other individuals. Rather, individuals may improve their welfare by

adopting inductively justified heuristics that are, in the terminology of Gigerenzer and Goldstein
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(2002), ecologically rational.

The paper is organized as follows:

Section 2 presents semantic and syntactic representations of differential awareness in terms

of extensive games. The syntactic representation is constructed by associating with any given

extensive form game a propositional language rich enough to specify all histories and sets of

histories that arise in that game. The crucial idea in our representation of games with awareness

is that players may be unaware of some possible histories of the game, and may therefore have

access only to a restricted version of the game. This leads to an important modification of the

standard modal-logical approach, in which a proposition is known to be true by a player if it is

true in all histories considered possible by that player, given the information she has observed. In

a game with awareness, a proposition may be false in the actual history, but true in all histories

considered possible by a player, given their limited awareness. From the perspective of the full

game (or, more generally, from the perspective of a player with greater awareness), it makes sense

to characterize the player’s attitude to such propositions as ‘belief’rather than ‘knowledge’. We

show how knowledge and belief operators may be defined in a game with differential awareness,

in a way that allows for false belief but not false knowledge. These ideas are illustrated with

reference to an example first presented by Heifetz, Meier and Schipper (2006).

In Section 3 we consider the question of how individuals can reason about their own aware-

ness and unawareness. First, the language is extended to include existential propositions of the

general form ‘there exists a proposition q, such that ...’. This development enables us to consider

the process of reasoning about awareness and unawareness. Within the model of games with

awareness developed in Section 2, we show that an individual cannot believe that there there

exist propositions of which he is unaware. Nevertheless, this proposition can be formulated in the

richer language we consider. Moreover, in the context of games with awareness, it will be true, in

general, that there exist propositions of which players are unaware. Furthermore, players in games

will, in general, experience the discovery of propositions of which they were previously unaware,

and observe the bounded awareness of other players.

These observations lead us to consider modes of reasoning other than the Bayesian inference

that characterizes standard extensive form games. We show how inductive modes of reasoning

may be used by individuals to assess existential propositions about awareness. Inductive support

may be derived from past experience or from observation of others. We say that a proposition

is supported by historical induction if it has been (believed) true in the past, and never been

(believed) false. In particular, since everyone has the experience of becoming aware of propositions

and possibilities they have not previously considered, the proposition that they will continue to do

so is supported by historical induction. Similarly, a proposition that holds true for at least some

individuals, and is not false for any individual is supported by induction over individuals. In a game
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with awareness, players believe that others are unaware of at least some propositions. Inductive

reasoning suggests that the same will be true of all players, including the person undertaking the

induction.

Finally, we consider the implications of inductive reasoning about unawareness for decisions,

represented in general by the choice of strategy in an extensive form game. In Section 5, we argue

that decisionmakers may reasonably choose strategies subject to heuristic constraints that rule out

actions if the proposition that these actions will have unforeseen consequences is supported by in-

duction. We provide criteria under which the adoption of heuristic constraints may be ecologically

rational from the perspective of the full game. The analysis is illustrated by a no-trade result for

the speculative trade example developed previously. We discuss possible applications to the pre-

cautionary principle, often advocated as a basis for regulatory decisions regarding environmental

risks, and to decisions regarding research and discovery.

Finally, we offer some concluding comments.

2 Games with awareness

2.1 Extensive-form games and languages: notation

In this section, we describe the notation for games and the associated languages. We will use the

term ‘semantic’to refer to the representation of the problem in terms of possible game histories,

and ‘syntactic’ to refer to the representation in terms of the truth values of propositions. For

standard games, there is a 1-1 correspondence between semantic and syntactic representations,

including temporal structures, information and beliefs.

We begin with a(n almost) standard definition of an extensive-form game, as in Osborne and

Rubinstein (1994).

Definition 1 A finite extensive game is Γ = (N ∪ {c}, A,H, P, f c, I, {vi : i ∈ N}) where:

G1 (Player Set): N = {1, ..., n} is a finite set of players, and c denotes Nature (the ‘chance’
player);

G2 (Actions):A is a finite non-empty set of actions;

G3 (Histories): H is a set of histories, defined as sequences of actions undertaken by the players.

H is partially ordered by the subhistory relationship � . The set of terminal histories is denoted

Z. The set of actions available at h is denoted A (h) ⊆ A.

G4 (Player Function): P : H → N ∪ {c} assigns to each history a player making a decision after
that history;
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G5 (Chance Assignment): f c associates with every history h such that P (h) = c a probability

distribution over A drawn from some set ∆, and with support A (h) .

G6 I : H → 2H is the information set assignment function whose range forms a partition of H

and exhibits the properties that h ∈ I (h) for all h ∈ H, and for any h′ ∈ I (h), P (h) = P (h′)

and A (h) = A (h′).

G7 (Payoffs): For each player i ∈ N , vi : Z → R is the payoff function for player i, representing

expected-utility preferences for lotteries over Z.

So, the set of histories h is the set of all sequences of the form 〈α1, α2, ..., αk〉, where αj ∈
A (〈α1, α2, ..., αj−1〉), j = 1, ..., k, including the trivial sequence 〈·〉. The extensive structure of
the game Γ is represented by the sub-history relationship 〈α1, ..., αk〉 � 〈α1, α2, ..., αk, .., αl〉. If
h = 〈α1, α2, ..., αk〉, we denote h • αk+1 = 〈α1, α2, ..., αk, αk+1〉 and observe h � h • αk+1.

The process of Bayesian learning in an extensive form game works by exclusion. That is, as

the game is played out, players learn that some histories in the game are no longer possible, and

update their probabilities on the remaining possible histories using Bayes’rule. The information

set I (h) describes the set of histories that have not been ruled out by the information available

to player P (h) at h.

A behavioral strategy βi for player i is a collection of independent probability measures
(
βi (h) : P (h) = i

)
where the support of each such βi (h) is a subset of A (h), and where for any h′ ∈ I (h),

βi (h′) = βi (h). That is, there is an independent probability measure over actions specified

for each history at which player i is called upon to play and this probability measure is the same

for all histories residing in the same information set. A behavioral strategy profile β is a set of

behavioral strategies, one for each i.

We define a subjective probability µi =
(
µi (h) : P (h) = i

)
for player i to be an assignment to

each history h in H for which P (h) = i, a probability measure on the set of histories in I (h) in

which for any h′ ∈ I (h), µi (h′) = µi (h).1 A subjective probability system µ, is a set of subjective

measures, one for each i. An assessment is a pair (β, µ), where β is a behavioral strategy profile

and µ is a subjective probability system.

Given a strategy profile β, for each h in H we denote by τ (β|h) the probability distribution

over terminal histories induced by β, conditional on history h having been reached. Let τ (β)

denote the unconditional probability distribution over terminal histories induced by β.

Hence given the assessment (β, µ), the continuation value of player i = P (h) at h (that is, the

continuation value conditional on information set I (h) having been reached) is

V iΓ (h;β, µ) =
∑

h′∈I(h)

µi (h) [h′]

(∑
h′′∈Z

τ (β|h′) [h′′] vi (h′′)

)
,

1 Osborne and Rubinstein use the term ‘belief system’. Our terminology has been chosen to avoid confusion
with the belief operator to be defined below.
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and we denote the expected value of the (entire) game for player i by V iΓ (β) =
∑
h∈Z τ (β) [h] vi (h).

An assessment (β, µ) is sequentially rational if each player’s strategy is a best response at every

information set at which she is called upon to play. That is, we require, for each player i ∈ N and

every h, such that P (h) = i,

V iΓ (h;β, µ) ≥ V iΓ
(
h;
(
β̂
i
, β−i

)
, µ
)
, for every strategy β̂

i
of player i.

We refer to a behavioral strategy profile that assigns positive probability to every information set

as completely mixed. An assessment is consistent if it is the limit of a sequence ((βm, µm))
∞
m=1 in

which each strategy profile βm is completely mixed and each belief system µm is derived from βm

using Bayes’rule. A sequential equilibrium is a consistent and sequentially rational assessment.

As in Osborne and Rubinstein, it is straightforward to demonstrate the existence of a sequential

equilibrium.

We now consider a syntactic rendition of the same structure. With each game Γ, we associate

a language LΓ. The language must be rich enough to encompass the sequential structure of H, the

information in I and the valuations vi. The relationship between the properties of the language LΓ

and of the game Γ may be formalized using the semantic approach to modal logic first presented

by Kripke (1963) and developed in relation to the logic of knowledge by Fagin and Halpern (1988).

Space does not permit a detailed exposition here, but a brief outline will be useful. The central

idea is to use properties of the game Γ to define (in Kripke’s terminology) accessibility relations

between histories h ∈ H. More precisely, the property of common membership of an information
set defines an equivalence relation while the temporal structure defines a partial ordering. These

relations define a class of Kripke frames for which an appropriate axiomatization of the language

LΓ can be shown to be complete (permitting derivation of all theorems applicable to games Γ)

and sound (ensuring that every proposition derivable in LΓ is valid in Γ).

Definition 2 For a game Γ, the game language LΓ is a set of sentences closed under the logical

operators ∧ and ¬, and derived from:

L1 (Player terms): Terms N = {pi : i ∈ N} representing players, with c denoting Nature (the
‘chance’player), where pi is read as ‘i is a player in the game’;

L2 (Actions): A set of elementary propositions A = {pα : α ∈ A} where pα is read as ‘action α
has just been taken’

L3 (Histories): A set of elementary propositions H = {ph : h ∈ H} read as ‘the current history is
h’.

L4 (Player Assignment) A set of elementary propositions P = {ph,i : h ∈ H, i ∈ N} where ph,i is
read as ‘player i moves at h

L5 (Probabilities): A set of probability propositions {pπ : π ∈ ∆} where ∆ is the probability simplex
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over A and pπ is read as ‘the probability distribution over A is given by π ∈ ∆’

L6 (Knowledge operators): {kip : i ∈ N} read as ‘i knows p’
L7 (Payoffs): For each player i ∈ N , and v ∈ V , an elementary proposition pv,i read as ‘player
i receives payoff v’. We will assume, without details, that the language is rich enough to allow

players to do standard arithmetic, for example, to express propositions like ‘my expected payoff is

less than v’

L8 (Temporal structure) The temporal structure of the game is given by an operator w (where wp

is read as ‘p was true in the past’)

Given an appropriate semantic interpretation, the language LΓ represents a syntactic rendition

of the game Γ. That is, for any given play of the game, the truth value of any proposition p ∈ LΓ

can be inferred. Conversely, the structure of the game can be inferred from the set of propositions

in LΓ that are tautologically true, and any set of truth values consistent with those tautologies

determines a play of the game.

The semantic interpretation works as follows. For any p ∈ LΓ, the statement ‘p is true at h’

is written h |=Γ p. The relation |=Γ can be derived, using the standard rules of logic and the

interpretation rules given below:

Definition 3 A semantic-syntactic game representation (Γ,LΓ, |=Γ) consists of an extensive form

game Γ the associated language LΓ and a relation |=Γ such that, for all p, h, either h |=Γ p or

h |=Γ ¬p, and:

S1 (Players):h |=Γ pi,∀h ∈ H, i ∈ N
S2 (Actions):h |=Γ pα ⇔ ∃h′, s.t. h = h′ • α
S3 (History):∀h, h′ ∈ H, (i) h |=Γ ph, (ii) h′ 6= h⇔ h′ |=Γ ¬ph, (iii) h |=Γ wph′ ⇔ h′ � h
S4(Player Assignment) h |=Γ ph,i ⇔ P (h) = i

S5 (Probability ): Given a strategy profile β, h |=Γ pπ iff β assigns π to A at h

S6 (Knowledge ): h |=Γ kip, if and only if P (h) = i and h′ |=Γ p for all h′ ∈ I (h) ;

S7 (Payoffs )): h |=Γ pv,i ⇔ h ∈ Z ∧ vi (h) = v

S8 (Temporal structure) h |=Γ wp⇔ ∃h′ ≺ h, h′ |=Γ p

Of these rules, that of the knowledge operator ki is the only one that requires special attention.

It states that, at the history h in the game, player i knows the proposition p is true if and only if

p is true in all histories considered possible by player i at h. Thus, the semantic interpretation of

the language relates knowledge directly to the information sets of players in the game.

It is straightforward to show that the knowledge operator satisfies the standard set of axioms

referred to in the literature on modal logic as S5. The most important of these are Necessitation

p ⇒ kip, commonly denoted K, Distribution ki (p⇒ q) ⇒ (kip⇒ kiq), commonly denoted D,
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Truth (kip⇒ p), commonly denoted T, Positive Introspection (kip⇒ kikip), commonly denoted

4, and negative introspection, (¬kip⇒ ki¬kip), commonly denoted 5. Fagin et al (1985) show that,
in a ‘possible worlds’representation of knowledge, S5 is a complete and sound axiomatization for

the knowledge operator defined as above. However, this result does not encompass the temporal

structure of knowledge in an extensive form game, where the notion corresponding to the set of

worlds is the set of partial histories at which a given player is to move. We conjecture that a

sound and complete axiomatization could be obtained by combining the S5 axioms for knowledge,

a suitable set of axioms for the temporal operator w and a ‘perfect recall’ axiom, of the form

wkip⇒ kiwkip. However, this question is beyond the scope of the present paper.

We can now consider syntactic notions of awareness and unawareness. The standard definition

of awareness is that an individual is aware of a proposition if they know its truth value, or know

that they do not know its truth value. That is, aip ⇔ kip ∨ ki¬p ∨ ki (¬kip ∧ ¬ki¬p) with
unawareness being the negation of awareness, that is, uip is a synonym for ¬aip. (Notice that
kip ∨ ki¬p ∨ ki (¬kip ∧ ¬ki¬p) may be stated more compactly as kip ∨ ki (¬kip)).
As observed by Modica and Rustichini (1994), for a partitional information structure (which

we have assumed), aip is true for all p ∈ LΓ. Also we have ajaip and so forth. Because of this

property we refer to a standard extensive form game as a game of full common awareness. Since

uip is trivially false in a game of full common awareness, we will not use the definition above, but

will define awareness and unawareness in the context of a game with differential awareness, which

we now construct.

2.2 Restrictions

Under the standard assumptions of unbounded rationality and common knowledge, all players in

a game are aware of the structure of the game, of each other’s awareness, of others’awareness

of their own awareness, and so on. With boundedly rational players, however, it is necessary to

consider the possibility that, at some given history h, player i = P (h), who must choose an action,

may not be aware of all possible histories in the game. For example, player i may be unaware of

possible future moves available to other players, to the chance player, or to herself. Player i may

even be unaware of the existence of some other players. We formalize the less than full awareness

of the player P (h) at h by ascribing to her a game that is a restriction of the full awareness game.

Essentially, the restriction is obtained by deleting some of the terminal histories and all partial

histories of those terminal histories of the original game and then constructing the restricted game

to be consistent with the original game in terms of its information structure.

Definition 4 Fix a game Γ = (N ∪{c}, A,H, P, f c, I, {vi : i ∈ N}), where Z ⊂ H denotes the set

of terminal histories in Γ. A non-empty subset of terminal histories Z̃ ⊂ Z is deemed admissible,
if ΓZ̃ = (NZ̃ ∪ {c}, AZ̃ , HZ̃ , PZ̃ , f

c
Z̃
, IZ̃ , {viZ̃ : i ∈ NZ̃}) constitutes a restriction of the game Γ in
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which:

HZ̃ =
{
h ∈ H : ∃z ∈ Z̃, h � z

}
;

NZ̃ = {n ∈ N : ∃h ∈ HZ̃ , P (h) = n} ;

for each h ∈ HZ̃ :

IZ̃ (h) = HZ̃ ∩ I (h) ;

AZ̃ (h) = {a ∈ A (h) : h • a ∈ HZ̃};

PZ̃ (h) = P (h) ;

f c
Z̃

(h) (a) =
f c (h) (a)∑

ã∈AZ̃(h)

f c (h) (ã)
,

and,

for each i ∈ NZ̃ and z ∈ Z̃, v
i
Z̃

(z) = vi (z) .

We denote the relation that ΓZ̃ is a restriction of the game Γ by ΓZ̃ v Γ.

Furthermore, in a slight abuse of notation, we shall also extend the domains of AZ̃ , PZ̃ , f
c
Z̃
,

IZ̃ to H, by setting for each h in H −HZ̃ :

IZ̃ (h) := HZ̃ ∩ I (h) ; AZ̃ (h) := {a ∈ A (h) : ∃h′ ∈ IZ̃ (h) s.t. h′ • a ∈ HZ̃}; PZ̃ (h) := P (h) ; and,

f c
Z̃

(h) (a) :=

 f c (h) (a) /
∑

ã∈AZ̃(h)

f c (h) (ã) if AZ̃ (h) 6= ∅

0 if AZ̃ (h) = ∅
.

By construction the subhistories and the subhistory ordering are preserved in the sense that,

for any h, h̃ ∈ H, such that h̃ �Γ h, if h is in the restricted set of histories HZ̃ then h̃ must

also be in HZ̃ and furthermore we retain h̃ �ΓZ̃
h in the restricted game. In addition, no new

terminal nodes are created in the restricted game, allowing us to obtain the payoff function from

the restriction of vi to Z̃. The definition of the chance assignment function f c
Z̃
ensures that if an

action by nature is excluded from consideration at h, the relative probabilities of the remaining

actions α ∈ AZ̃ (h) are unchanged. Notice it also follows from the definition that a restricted game

does not add information, or lose information with respect to the histories in the restricted game.

Remark 1 This relation v is a partial ordering on the set of games, corresponding to the subset
ordering on sets of terminal histories. In particular, if ˜̃Z ⊆ Z̃ ⊆ Z, then Γ ˜̃

Z
v ΓZ̃ v Γ.

A parallel definition applies for the associated language LΓ, and to the interpretation |=Γ. If

ΓZ̃ v Γ, then LΓZ̃
v LΓ. For elementary propositions p ∈ LΓZ̃

(those incorporating only terms

about players, actions and histories in the restricted game ΓZ̃), we have, whenever h ∈ H̃ ⊆ H,

h |=ΓZ̃
p if and only if h |=Γ p. Things are different when we come to consider knowledge and

belief. It is possible to have a situation where h′ |=ΓZ̃
p for all h′ ∈ IZ̃ (h), but nevertheless,
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h |=Γ ¬p. That is, p is true for all the histories considered possible by player i = P (h) at IZ̃ (h) in

the restricted game ΓZ̃ , but that the restricted information set does not include the actual history

h, at which p is false.

Thus, in a restricted game, players may hold false beliefs about propositions p. More generally,

what appears to the player as reliable knowledge about a proposition p may be an unreliable belief

if there are histories h′′ that cannot be ruled out on the basis of the information available at h,

of which the player is unaware and at which p is false. We write ‘bip’read as ‘i believes p’and

define what it means for a player to believe a proposition is true in the game they perceive to be

playing from the viewpoint of the unrestricted game.

Definition 5 Fix a game Γ and an admissible subset of terminal histoires Z̃ ⊆ Z with associated
restricted game ΓZ̃ v Γ. For any proposition p ∈ LΓZ̃

, any history h ∈ H and i = P (h),

h |=Γ,Z̃ bip iff h
′ |=ΓZ̃

p for all h′ ∈ IZ̃ (h) .

Remark 2 Since the restricted game ΓZ̃ is itself a game, it remains true that, for any h
′ ∈ HZ̃ ,

j = PZ̃ (h′), and any p ∈ LΓZ̃
, h′ |=ΓZ̃

kjp if and only if h′′ |=ΓZ̃
p for all h′′ ∈ IZ̃ (h′). That

is, within any game, the knowledge operator is defined as usual. However, when considering a

restriction of a game from the viewpoint of that game, we use the belief operator bi. To sum this

up

h |=Γ,Z̃ bip⇔ h′ |=ΓZ̃
kip for any (and hence all) h′ ∈ IZ̃ (h) .

Note that bip is a proposition in Γ referring to the restriction ΓZ̃ , while the proposition kip is

well-defined within each of Γ and ΓZ̃ , but has different meanings. In particular it is possible that

h |=Γ ¬kip while h′ |=ΓZ̃
kip for all h′ ∈ IZ̃ (h) (and in the latter case if h /∈ IZ̃ (h) it may be,

but need not be true that h |=Γ ¬p). That is, from the perspective of Γ ‘knowledge’in ΓZ̃ may be

unreliable or false, which is why we call it belief. Only if IZ̃ (h) = I (h) will knowledge and belief

coincide.

It follows from the above remark that the belief operator does not satisfy the Truth Axiom

T. Even more importantly, the belief operator does not satisfy negative introspection (Axiom 5

in S5). Consider any history h′ ∈ I (h), such that h′ /∈ HZ̃ and therefore h
′ /∈ IZ̃ (h). Then,

h |=Γ,Z̃ ¬biph but also (since ¬ph is not a proposition in LΓZ̃
) h 2Γ,Z̃ bi¬ph and h 2Γ,Z̃ bibi¬ph.

Lemma 1 The belief operator satisfies the properties of the system KD4, namely

Necessitation (K) p⇒ bip,

Distribution (D) bi (p⇒ q)⇒ (bip⇒ biq),

Positive Introspection (4) bip⇒ bibip

Since the belief operator displays non-trivial unawareness, we treat awareness and unawareness

as derived operators. We write aip, read as ‘i is aware of p’, and write uip, read as ‘i is unaware
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of p’, and define what it means for a player to be aware (respectively, unaware) of a proposition

in the game they perceive to be playing from the viewpoint of the unrestricted game.

Definition 6 Fix a game Γ, an admissible subset of terminal histories Z̃ ⊆ Z, with associated

restricted game ΓZ̃ v Γ. For any proposition p ∈ LΓZ̃
, any history h ∈ H and i = P (h),

(i) h |=Γ,Z̃ aip iff h |=Γ,Z̃ bip ∨ bi (¬kip)
(ii) h |=Γ,Z̃ uip iff h |=Γ,Z̃ ¬aip

In words, we say at a history h in the game Γ, player i = P (h) who perceives to be playing the

game ΓZ̃ , is aware of a proposition if from the perspective of the unrestricted game Γ, he either

believes the proposition is true or believes he does not know the proposition is true. Notice in this

formulation, the awareness operator preserves semantic equivalence. That is, if two propositions

p, q ∈ LΓZ̃
are semantically equivalent then i is aware of p if and only if she is aware of q.2

2.3 Perception mapping

We are concerned with games with awareness, in which players, at any given history where they

are called on to play, may be unaware of some possible histories. To represent this, we need to

relate the game actually being played to the game as perceived by the players. We shall define

the evolution of awareness of the players through the game by the perception mapping:

Definition 7 Fix a game Γ. A perception mapping is a function Z̃ : H → 2Z\∅, where with each
history h ∈ H, the set Z̃ (h) ⊆ Z is an admissible set of terminal histories considered by player

P (h) at history h. Denote by

ΓZ̃(h) = (NZ̃(h) ∪ {c}, AZ̃(h), HZ̃(h), PZ̃(h), f
c
Z̃(h)

, IZ̃(h), {v
i
Z̃(h)

: i ∈ NZ̃(h)}),

the restricted game associated with the set of terminal histories Z̃ (h) that is imputed to player

P (h) at h.

We impose the following requirements on the perception mapping.

IN: (Information Neutrality): For all h, h′ in H, h′ ∈ I (h)⇒ Z̃ (h′) = Z̃ (h) .

IA: (Increasing Awareness): If h′ � h and P (h) = P (h′) then Z̃ (h′) ⊆ Z̃ (h).

NI: (No Impossibility): For all h, IZ̃(h) (h) 6= ∅.

The Information Neutrality property requires a player’s level of awareness be congruent with

the information structure of the full awareness game. More precisely, at any two histories in

2 This is not true in the approach of Fagin and Halpern (1998) who take as their starting point the problem of
logical omniscience which may be stated simply as follows. Supposing that an individual knows some proposition p
to be true, and also knows p⇒ q, does the individual also know q? Fagin and Halpern address this question using
the distinction between explicit and implicit knowledge. A proposition p is implicitly known if it is semantically
equivalent to some q that is explicitly known. In the case when p is implicitly but not explicitly known by i, Fagin
and Halpern say that i is unaware of p.
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the same information set, the player’s knowledge, beliefs and awareness are the same. This is

consistent with the standard treatment of information sets in decision theory and game theory.

The Increasing Awareness property ensures that, once a player considers a (terminal) history,

she does not forget it. We will say the game displays non-trivial increasing awareness for i at h

if there exists some h′ � h such that the inclusion is strict, that is, Z̃ (h′) ⊂ Z̃ (h) .

The No Impossibility property ensures that the player who is to move always considers some

history possible.3

For interactive awareness, we suppose for any pair of histories h and h′ in H, such that there

exists h′′ ∈ IZ̃(h) (h) for which h′′ � h′, and with i = P (h) and j = P (h′), we can define the

second-order imputation in which i at h imputes to j at h′ consideration of the set of terminal

histories Z̃ (h) ∩ Z̃ (h′). That is, player i at h cannot impute to j at h′ consideration of histories

which i at h herself has not also considered. On the other hand, there is no reason to suppose

that player i at h should incorrectly impute to j at h′ failure to consider histories that are in

fact considered by both i at h and j at h′. In particular if P (h) = P (h′) then by properties IN

(Information Neutrality) and IA (increasing awareness) of the perception mapping, it follows that

Z̃ (h) ∩ Z̃ (h′) = Z̃ (h). That is, a player cannot anticipate her future increasing awareness.

Higher order imputations may be similarly constructed. However, given the properties of the

perception mapping defined above, it turns out we need only consider second-order imputations.

To avoid the possibility that a player at the end of a second-order imputation is perceived to

have reached an empty information set, we extend the No Impossibility condition as follows.

NI∗: (No impossibility): For any for any pair of histories h and h′ in H, such that there

exists h′′ ∈ IZ̃(h) (h) for which h′′ � h′, and with i = P (h) and j = P (h′), the set of histories

IZ̃(h) (h′) ∩ IZ̃(h′) (h′) is not empty.

We now have all the elements needed to define a game with awareness.

Definition 8 A game with awareness G is characterized by the tuple
(

Γ, Z̃ (·)
)
where Γ = (N ∪

{c}, A,H, P, f c, I, {vi : i ∈ N}) is the full (maximally aware) extensive form game the players

are actually playing and Z̃ (·) is the associated perception mapping to admissible sets of terminal
histories, that satisfies IN, IA and NI∗ and encodes the evolution of interactive awareness of

the players i in N . That is, for each history h in H, player P (h) is aware of the game ΓZ̃(h).

Furthermore, for any pair of histories h and h′ in H, such that there exists h′′ ∈ IZ̃(h) (h) for

which h′′ � h′, and with i = P (h) and j = P (h′), i at h imputes to j at h′ consideration of the

set of terminal histories Z̃ (h) ∩ Z̃ (h′).

3 A special case of this property applies if awareness changes only when the information set would otherwise
be empty. In this case, individuals apply Bayesian updating until new information rules out all the histories they
had previously considered possible, at which point they must consider new conjectures about the world, associated
with new prior probability distributions. This special case will not be considered in detail here.
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In a game with awareness, the information set IZ̃(h) (h) is determined by the set of terminal

histories of which player P (h) is aware, and which have not been ruled out by the information

available to P (h) at h. Whereas in a standard extensive form game, the set of terminal histories

consistent with available information grows monotonically smaller until a unique terminal history

is reached. By contrast, in a game with awareness, players may become aware of new possibilities.

Nevertheless, the information set must ultimately contract as the game approaches the terminal

history.

This treatment of differential awareness may be compared to the standard common knowledge

assumptions in a game of full awareness. In this case, Z̃ (h) = Z for all h, and the associated

game Γ = ΓZ̃(h), for all h in H, is a standard extensive form game. Obviously, this assumption

greatly simplifies the analysis for the external modeller, and the computational problem facing

the players. However, the assumption of common knowledge of the game is exceptionally strong.

The approach adopted here represents the most limited possible modification of the full awareness

case.

An alternative approach, adopted in the context of static decisions by Heifetz, Meier and Schip-

per (2006), is to consider bounded rationality as generating a ‘coarsening’of the game structure.

That is, one or more histories (or, in the static context, states) in the complete game are mapped

to a single history in the coarsened game. The coarsening approach avoids the need to impute be-

liefs regarding propositions of which a player is unaware. As a result, the only false beliefs players

can hold are beliefs about the knowledge and awareness available to other players (Galanis, 2011).

By contrast, as can be seen from the discussion above, the restriction approach adopted here

allows false beliefs even in the case of a single-player game with Nature. However, the coarsening

approach has so far proved intractable in the context of extensive form games. Among other prob-

lems, we note the diffi culty of specifying consequences when two terminal histories with different

payoff vectors are merged. Partly as a result of these diffi culties, most treatments of extensive-

form games with unawareness, including those of Halpern and Rego (2006b) and Heifetz, Meier

and Schipper (2009), have adopted an approach similar to that presented above.

Remark 3 In a slight abuse of notation, for any proposition p, and history h, and where i = P (h),

we will write h |=Γ bip instead of h |=Γ.Z̃(h) bip. This simplification reflects the fact that, since the

restriction Z̃ (h) applicable at h in Γ is entirely determined by h and G, it is redundant to spell it
out.

2.4 Behavior rules, strategies, subjective probabilities and equilibrium
in games with awareness

In a game with awareness G =
(

Γ, Z̃ (·)
)
, at each history h in the game, the player P (h) who is

called upon to play at that history selects a randomization defined over AZ̃(h) (h), the actions she
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thinks are available. A collection of these randomizations constitutes a ‘rule’for determining the

‘play’of the game Γ.4

Definition 9 Let G =
(

Γ, Z̃ (·)
)
be a game with awareness. A behavioral rule r for the players

in the game Γ is a collection of randomizations over actions (r (h) : h ∈ H, s.t. P (h) 6= c), where

each r (h) is a probability distribution whose support is a subset of AZ̃(h) (h), the set of actions

player P (h) perceives to be available at her information set IZ̃(h) (h). Denote by τ (r) the prob-

ability distribution over terminal histories induced by r and the chance assignment f c of nature.

The (ex ante) expected value for player i of the play of the game Γ associated with the rule r is

given by

V iΓ (r) =
∑
h∈Z

τ (r) [h] vi (h) . (1)

To determine at each history h in the game Γ what the player P (h) will select we shall impute

to that player a ‘theory’of how she thinks the game will be played, in the form of a strategy

profile for the continuation of the game she perceives she is playing at that history. We assume

her theory of how the game is being played at that history is the same for any player at any history

that goes through that information set who perceives himself to be playing the same game. In

particular, this implies that the strategy profile ascribed to a player remains unchanged if her level

of awareness at a subsequent information set is unchanged. In addition, we require the strategy a

player’s theory ascribes to another player must be consistent with the awareness imputed to that

player. Formally we define a strategy profile for a game with awareness as follows.

Definition 10 Let G =
(

Γ, Z̃ (·)
)
be a game with awareness. A strategy profile β = (βh : h ∈ H)

for G assigns to each history h, a behavioral strategy profile βh for the continuation of the game
ΓZ̃(h) from the information set IZ̃(h) with the consistency properties: for any history h

′ ∈ IZ̃(h) (h)

and any history h′′ for which h′ � h′′:

1. if Z̃ (h′) = Z̃ (h′′) then the continuation of βh′ from IZ̃(h′) (h′′) coincides with βh′′ ;

2. for player P (h′′) = j, the support of βh
(
IZ̃(h) (h′′)

)
is a subset of AZ̃(h) (h′′)∩AZ̃(h′′) (h′′).

Remark 4 Recall the property NI∗ (No impossibility) of the perception mapping ensures that

a player at the end of any second-order imputation is not imputed to have reached an empty

information set. Hence it is always possible for a player to ascribe how another player is playing in

4 If the players are all aware of the game Γ, then the behavioral rule corresponds to what we referred to in
subsection 2.1 as a behavorial strategy profile. In the setting we consider below, however, one or more of the
players may not be fully aware of the game Γ that they are actually playing. Although a less than fully aware
player might adopt a ‘rule of play’that will determine her choice at ever information set she may encounter in the
game Γ, in general she will not have access to the behavioral rule generated by the way she and her opponents decide
on their choice of actions during the course of play. Hence we feel it inappropriate to refer to such a behavioral
rule as a strategy profile.
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a way that is consistent with the game she imputes to her opponent. The property IN (Information

Neutrality) in conjunction with the first part of the consistency property for a strategy profile

ensures that the ‘theory’a player holds about how the game is being played at a particular history

is the same for all other histories in the same information set.

For a game of common awareness, the strategy profile conforming to the consistency property

defines a strategy profile for a standard game. Conversely any standard behavioral strategy profile

for a standard game defines a behavioral strategy profile for the associated game of common

awareness.

Next consider a game with awareness G =
(

Γ, Z̃ (·)
)
, in which, for each h inH, either Z̃ (h) = Z

or Z̃ (h) = Z̃ ⊂ Z, and with ΓZ̃ a game of common awareness. Then, whenever Z̃ (h) = Z, the

strategy profile defines at information set I (h) a probability measure on A (h). On the other

hand, if Z̃ (h) = Z̃ with ΓZ̃ a game of common awareness, then βh is a strategy profile for the

continuation of the standard game ΓZ̃ and therefore for each h
′ in HZ̃ that follows from IZ̃ (h),

βh (I (h′)) defines a probability measure on AZ̃ (h) ⊆ A (h). That is, the randomization over

actions imputed by player P (h) at history h to another player P (h′) at his information set I (h′)

must be consistent with the game ΓZ̃ that the game with awareness at h imputes that player P (h)

imputes to player P (h′) at history h′.

More generally, in any game with awareness G =
(

Γ, Z̃ (·)
)
, any strategy profile β = (βh : h ∈ H)

generates a behavioral rule r for the game Γ given by r (h) = βh

(
IZ̃(h) (h)

)
.

Analogous to standard games (that is, games of common awareness), given a strategy profile,

in order for a player to be able to evaluate her expected continuation payoff from an information

set that she would be called upon to play, we also need to specify her subjective beliefs about

where in her information set she thinks she is. Thus we extend the definition of a subjective

probability system for a game with awareness as follows.

Definition 11 Let G =
(

Γ, Z̃ (·)
)
be a game with awareness. A subjective probability system

µ = (µh : h ∈ H) for G assigns to each history h in H, a probability measure on the set of histories
in IZ̃(h) (h) with the consistency property: for any h′, h′′ in H, if h′′ ∈ I (h′) then µh′ = µh′′ .

The interpretation of the subjective probability measure µh is that at history h, the probability

that player i = P (h) assigns to being at the history h′ ∈ IZ̃(h) (h), is µh (h). Thus the consistency

condition ensures that subjective probabilities are common across all elements of an information

set.

Definition 12 Let G =
(

Γ, Z̃ (·)
)
be a game with awareness. An assessment for G is a pair

(β,µ) where β is strategy profile for G and µ is a belief system for G.
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Given a strategy profile β for G, for each h in H denote by τΓZ̃(h)
(βh) the probability distrib-

ution over terminal histories induced by the strategy profile βh. Given the assessment (β,µ), we

thus have at each h in H, player i = P (h) to whom the perception mapping imputes the game

ΓZ̃(h) perceives the continuation value from her information set IZ̃(h) (h) from the play of the

game according to the continuation strategy profile βh to be:

V iΓZ̃(h) (βh, µh) =
∑

h′∈IZ̃(h)(h)

µh [h′]

 ∑
h′′∈Z̃(h)

τΓZ̃(h)
(βh) [h′′] vi (h′′)

 (2)

Definition 13 Let G be a game with awareness. An assessment (β,µ) is sequentially rational

for player i, if i is playing a ‘best response’at each of her information’s sets. That is, for every h

in H, such that i = P (h) :

V iΓZ̃(h) (βh, µh) ≥ V iΓZ̃(h)
((
β̂
i

h, β
−i
h

)
, µh

)
,

for every continuation strategy β̂
i

h of i in the continuation of the game ΓZ̃(h) from the information

set IZ̃(h) (h).

The assessment (β,µ) is sequentially rational if it is sequentially rational for all i.

We shall refer to a behavioral strategy profile β for the game with awareness G =
(

Γ, Z̃ (·)
)

as being completely mixed as can be done consistently if for any three histories h, h′ and h′′, such

that h′ ∈ IZ̃(h) (h) and h′ � h′′, βh
(
IZ̃(h) (h′)

)
assigns positive probability to every action in

AZ̃(h) (h′′) ∩ AZ̃(h′′) (h′′). That is, if player P (h) at h, perceives herself to be at the information

set IZ̃(h) (h) in the game ΓZ̃(h) and imputes to player P (h′′) at his information set IZ̃(h) (h′′)

in that game that he will perceive himself to be at the information set IZ̃(h)∩Z̃(h′′) (h′′) in the

game ΓZ̃(h)∩Z̃(h′′), then each action available in the game ΓZ̃(h)∩Z̃(h′′) at the information set

IZ̃(h)∩Z̃(h′′) (h′′) (that is, each action in AZ̃(h) (h′′) ∩ AZ̃(h′′) (h′′)) is assigned strictly positive

weight by the strategy profile.

Definition 14 Let G be a game with awareness. An assessment (β,µ) is consistent if there

exists a sequence of ((βn,µn))
∞
n=1 that converges pointwise to (β,µ) and has the property that

each strategy profile βn is as completely mixed as can be done consistently and that each belief

system µn is derived from βn using Bayes’rule.

Thus we have all the elements to extend the concept of a sequential equilibrium to a game

with awareness.

Definition 15 Let G be a game with awareness. An assessment (β,µ) is a sequential equi-

librium if it is sequentially rational and consistent.

We prove in the appendix the following.
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Proposition 2 A sequential equilibrium exists for any game with awareness.

Sequential equilibrium is not the only equilibrium concept that might be considered for games

with awareness. For example, Halpern and Rego consider subgame perfect equilibrium. We

consider that sequential equilibrium is a sensible choice because, in a game with awareness, players

will, in general, have the experience of reaching information sets that they previously considered

as off-equilibrium. This experience can arise because other players were acting on the basis of

a different perception of the game from the one imputed to them. It therefore makes sense for

players to confine attention to strategies that prescribe reasonable behavior at every information

set at which they may move, and not merely at those that occur with positive probability in the

equilibrium of the game they perceive themselves to be playing.

Proposition 2 demonstrates existence, but not uniqueness of sequential equilibrium. This

limitation is not specific to games with awareness. For example Rubinstein (1985) demonstrated

the existence of large numbers of sequential equilibria in an asymmetric information version of

a two-player bargaining game of alternating offers. However, he is able to establish a unique

equlibrium for this game, under additional assumptions on what inferences the uninformed player

may draw from an off-equilibrium move by the informed player.

This approach to refinement may be more problematic in games with awareness, where an

unexpected off-equilibrium move may lead to a change in awareness. Moreover, if a player is

unaware of the possibility of an action by another player, then the other player’s decision not

to take that action cannot inform her inference about equilibrium selection. Heifetz, Meier and

Schipper (2011) provides an interesting example of this kind.

To the best of our knowledge, there is no general characterization of uniqueness conditions

for sequential equilibrium (except under perfect information). We conjecture that any suffi cient

condition for uniqueness of sequential equilibrium in standard extensive-form games would also

apply to games with awareness if the condition is preserved under the restriction operation.

However, a comprehensive treatment of the problem of equilibrium selection is beyond the

scope of the present paper. We will confine our attention to the case of games in which there

exists a unique equilibrium for the maximal game Γ and for all restrictions of Γ. While this is

a restrictive condition, it admits a significant class of games, notably including (generically) all

one-person games with Nature.

2.5 Example

To illustrate the structure of a game with awareness, we adapt the speculative trade example of

Heifetz, Meier and Schipper (2006). In this example, a buyer (player 1) and an owner (player

2) may contract the sale of the owner’s firm at a price of 1. The value of the firm depends on

two contingencies; the possibility of a lawsuit which would reduce the value by L and a business
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opportunity which would increase the value by G. If neither occurs, the value remains unchanged

at 1. We represent the maximal game Γ as follows. Nature has two initial moves determining

whether the lawsuit and business opportunity arise. Before learning about Nature’s moves, the

buyer chooses whether to make an offer of 1. If an offer is made, the owner chooses whether to

accept it, also before learning about Nature’s moves. At the terminal nodes, players receive their

net payoffs and Nature’s moves are revealed.

We first describe the full or maximal awareness game. The initial history is 〈〉. Nature’s first
move is a choice from the set {αn, α0}, (innovation or null action). Let p ∈ (0, 1) denote the

probability Nature chooses αn. Nature’s second move is a choice from the set {α`, α0} (lawsuit or
null action). Let q ∈ (0, 1) denote the probability Nature chooses α`. There are now four histo-

ries 〈αn, α`〉, 〈αn, α0〉, 〈α0, α`〉, 〈α0, α0〉, forming an information set which we shall denote I1. At
I1, player 1 chooses from the set {α1, α0} (offer 100 or null action). If 1 chooses α0, the game termi-

nates. If 1 chooses α1 the information set becomes I2 = {〈αn, α`, α1〉 , 〈αn, α0, α1〉 , 〈α0, α`, α1〉 , 〈α0, α0, α1〉}
and 2 chooses from the set {αA, αR} (accept or reject the offer). The maximal game is illustrated
in figure 1.

<INSERT FIGURE 1 around here>

As in Heifetz, Meier and Schipper (2006), we suppose that the buyer is unaware of the pos-

sibility of a lawsuit while the seller is unaware of the possibility of an innovation. Thus, at each

history h in I1, the buyer only considers the terminal histories in which the lawsuit does not arise.

That is,

Z̃ (h) = Z̃1 = {〈αn, α0, α0〉 , 〈αn, α0, α1, αA〉 , 〈αn, α0, α1, αR〉 , 〈α0, α0, α0〉 , 〈α0, α0, α1, αA〉 , 〈α0, α0, α1, αR〉} ,

for all h in I1.

Denoting the game of which the buyer is aware at any history h in I1 by Γ1, we see that it

is obtained from the fully aware game Γ by deleting all histories containing nature’s second move

α`.

Similarly, at each history h in I2, the owner only considers the terminal histories in which the

business opportunity does not arise. That is,

Z̃ (h) = Z̃2 = {〈α0, α`, α0〉 , 〈α0, α`, α1, αA〉 , 〈α0, α`, α1, αR〉 , 〈α0, α0, α0〉 , 〈α0, α0, α1, αA〉 , 〈α0, α0, α1, αR〉} ,

for all h in I2.

Denoting the game of which the owner is aware at any history h in I2 by Γ2, we see that it is

obtained from the fully aware game Γ by deleting all histories containing nature’s first move αn.

The games are illustrated in figures 2 and 3, respectively.

<INSERT FIGURES 2 and 3 here>
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Both parties impute to the other a restriction of their own game. The buyer is unaware of

the possible lawsuit, and assumes the owner to be unaware of the possible innovation (at all non-

terminal histories), while the converse is true for the owner. Hence each imputes the other only

considers the terminal histories

Z̃1 ∩ Z̃2 = {〈α0, α0, α0〉 , 〈α0, α0, α1, αA〉 , 〈α0, α0, α1, αR〉} .

These lead to the same game Γ3, as illustrated in figure 4 and which is a game of common

awareness.

<INSERT FIGURE 4 around here>

Heifetz, Meier and Schipper (2006) propose a dominance principle that is suffi cient to ensure

that trade takes place in this model. In our model this corresponds to a sequential equilibrium

(β∗,µ∗), in which

β∗<> (I1) [α1] = 1, β∗<> (I2) [αA] = 1

β∗h
(
I11
)

[α1] = 1, β∗h
(
I12
)

[αA] = 1, for all h in I1

β∗h
(
I22
)

[αA] = 1, for all h in I2.

µ∗<>[<>] = 1

µ∗h [〈αn, α0〉] = p, µ∗h [〈α0, α0〉] = 1− p, for all h in I1

µ∗h [〈α0, α`〉] = q, µ∗h [〈α0, α0〉] = 1− q, for all h in I2

To check sequential rationality, notice that at I11 = I1 ∩HΓ1 (in Γ1) the action α0 (no offer)

leads to a payoff of zero for the buyer in all histories. The action α1 yields a net payoff of G in the

history 〈αn, α0, α1, αA〉 and a net payoff of zero in all other histories (those where the innovation
is not realized or the owner rejects the offer).

For the owner at I22 = I2 ∩HΓ2 (in Γ2) the action αA yields a sure net payoff of 0, while αR

yields a net payoff of −L for the history 〈α0, α`, α1, αR〉 and 0 for 〈α0, α0, α1, αR〉.5

3 Inductive reasoning about unawareness

We now address the central question for any account of limited awareness: in what sense can an

individual reason, from experience or observation, about the proposition that there exist proposi-

tions of which she is unaware?

5 Note that, at a price of 1, both parties strictly prefer to trade, and each imputes to the other a game in which
they are indifferent between trading and no-trading. Further, all of this is common knowledge. This example does
not, however, allow for common knowledge of a strict preference for trade. Heifetz, Meier and Schipper (2012) show
that, in general, unawareness cannot produce common knowledge of mutual strict preference for speculative trade.
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We begin by extending the language to include existential propositions of the general form

‘there exists a proposition p with property θ’. Our primary interest is on existential propositions

related to awareness, most notably, ‘there exists a proposition p of which I am unaware’. Our

first result, Proposition 3, is negative. We show that, within the modal-logical representation of

knowledge developed above, an individual can never believe that there exist propositions of which

she is unaware. In view of Proposition 3, we must consider whether a boundedly rational, but

nevertheless sophisticated, individual might be able to reason about their own limited awareness,

using methods outside the scope of the modal-logical framework considered thus far.

As we have argued above, an individual’s understanding of their own unawareness cannot be

represented within the context of a semantic-syntactic game representation, even when the game

itself is extended to allow for differential awareness. The kind of reasoning that can be represented

in such a context may broadly be described as ‘deductive’. That is, an initial set of premises

(the game tree and prior probabilities in the semantic rendition, the set of known propositions,

tautologies and implications in the syntactic rendition) is combined with new information (signals

in the semantic rendition, learning about the truth values of propositions in the syntactic rendition)

to yield a new and improved model. Given suffi cient information, the realised history of the game

and the truth value of all propositions in the associated language may be determined.

The deductive mode of reasoning associated with games of common awareness and the asso-

ciated modal logic of knowledge appear to offer the logical certainty of conclusions derived, in

accordance with stated axiomatic properties, from known premises. In a game with awareness,

however, this certainty is spurious. As we have seen, a proposition may be true in all states an

individual considers possible, but nevertheless false in reality. Decision procedures that presume

that logical certainty can be attained are likely to yield poor outcomes.

To address this problem, we need to answer two questions.

* First, how can, or should, individuals reason about their own unawareness?

* Second, if this reasoning supports the conclusion that the individual is unaware of some

relevant contingencies, how should she act?

To address the first question, we need to consider how an individual might reach either a

positive or a negative answer to the question ‘Do there exist relevant propositions of which I am

unaware?’. One answer (though not the only one) is to consider inductive reasoning, based on

generalization of past experience.

Consider first the situation of an individual who is to move in an extensive form game with

awareness. Under the assumption of increasing awareness (and assuming it holds non-trivially),

the individual’s previous experience includes a number of ‘surprises’, that is, discoveries of possible

terminal histories of the game she had previously not considered. Inductive reasoning supports

the judgement ‘if I have been surprised in the past, I may be surprised in the future’.
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Taken to an extreme, such reasoning could be paralyzing (a point made by critics of the

precautionary principle, discussed below). Since decisions cannot be avoided, decisionmakers

must adopt some combination of heuristics and formal rules to guide their choices.

In particular, individuals may use inductive criteria for identifying a ‘small world’, in which it

is reasonable for players to disregard the possible existence of relevant unconsidered contingencies,

and act on the basis of Bayesian decision theory applied to the game they perceive.

Inductive reasoning about games with awareness may therefore lead individuals to conjecture

either that they are or they are not, aware of all relevant contingencies. As will be shown by

Proposition 3 below, such reasoning cannot be encompassed by the usual modal logic of awareness,

if unawareness is represented, as it is here, by a failure to consider some possible histories of the

game.

However, it can be represented using a more general syntactic-semantic framework, such as that

put forward by Walker (2011), with precisely this kind of reasoning in mind. Walker suggests a

two-stage evaluation framework for propositions, with the first ‘subjective’stage incorporating the

decisionmaker’s inductively derived conjectures about their awareness, and the second ‘objective’

stage, incorporating the objective evaluation of an external observer.

Walker develops this approach with reference to the Fagin-Halpern (1988) approach in which

unawareness is modelled in terms of a distinction between implicit and explicit awareness, so

that a decisionmaker may not be (explicitly) aware of a proposition even though they are aware of

semantically equivalent proposition. However, no changes to the central idea are required to apply

the idea in the present context. The main difference is that whereas Walker’s syntax, developed

in a static setting, includes only the single string corresponding to the sentence ‘I am aware of

all propositions’, our dynamic, extensive-form, approach would require subjective evaluation of a

larger class of sentences of the general form ‘at my current position (in the game) I am aware of

all relevant propositions.’

4 The existential quantifier, existential propositions and
unawareness

The representation of differential awareness developed thus far is fairly standard, and is consistent

with Halpern and Rego (2007) and endorsed by Heifetz, Meier and Schipper (2008). The central

unresolved issue in the literature is how to deal with the fact that individuals may be conscious

of their own bounded awareness, and of the possibility that others may be aware of histories (or

propositions) of which they themselves are unaware. We note that from the definition of the belief

operator for the restricted game an individual has access to, that individual cannot believe that

there exist propositions of which they are unaware. On the other hand, individuals may believe
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(in fact, know) that other players are unaware of some propositions. Thus, we must consider

interpretations of the statement ‘there exist propositions/histories of which I am unaware’that

lie outside the syntactic-semantic framework developed so far.

In a game with awareness G =
(

Γ, Z̃ (·)
)
although the language LΓZ̃(h)

available to individual

P (h) at the history h is suffi ciently expressive to describe the restricted game ΓZ̃(h) she perceives

to be playing, it is inadequate to describe propositions she might reasonably entertain about

the full awareness game Γ and its associated language LΓ. The approach adopted here begins

by extending the languages {LΓZ̃(h)
: h ∈ H} to allow for reasoning about the existence of

propositions as follows. We include an existential quantifier ∃, used in conjunction with a formula
for substitution to produce propositions of the form

∃q ∈ LΓ such that (θ (q)) , (3)

where θ (q) is a Boolean combination of the free proposition q and propositions in LΓ. We denote

by θ (q|p) the proposition obtained by replacing all instances of q with p. For compactness, in the
formal analysis to follow, the existential proposition in (3) will be denoted q∃θ. Then h |=Γ q∃θ if

and only if there is some p ∈ LΓ such that h |=Γ θ (q|p).
As is standard, we will define the derived universal operator ∀ by

p∀θ ⇔ ¬q∃¬θ

That is, property θ holds for all p if there does not exist q such that ¬θq holds.

Example 1 As an illustration, fix a game with awareness G =
(

Γ, Z̃ (·)
)
and consider a history

h, for which Z̃ (h) ⊂ Z̃. For a given p ∈ LΓZ̃(h)
, the extended language contains such propositions

as ,

∃q ∈ LΓ such that ((q ⇒ p) ∧ ¬ (p⇒ q))

which we may interpret as saying that there is some (non-equivalent) proposition q in the richer

language LΓ that implies p. For example, in a criminal investigation, the fact that a person is

classed as a suspect typically means that, if some additional evidence were obtained, that person’s

guilt could be inferred. However, investigators will not, in general, know the exact nature of the

evidence they are looking for. The evidence could be either propositional (X was at the scene of

the crime) or epistemological (X knew that the gun was loaded).

Given that the language LΓ, as defined, contains an infinite number of propositions, evaluation

of propositions involving existential quantifiers is, in general, problematic. But in the framework

developed here, all propositions refer to the extensive form game Γ, which contains only finitely

many histories and awareness preserves semantic equivalence. So, we may consider the finite set
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of propositions derived from the power set 2H of H which consists of all finite disjunctions of the

form ph ∨ ph′∨ ... We will abuse notation by referring to this set of propositions simply as 2H .

Now for any proposition p ∈ LΓ let = (p) denote the set of histories at which p is true. Then

there exists a unique element p̂ ∈ 2H such that p̂ is semantically equivalent to p, defined as

p̂ =
∨

h∈=(p)

ph

that is, the disjunction of the elementary propositions ph taken over = (p). It is immediate that,

for any θ (q), θ (q|p)⇔ θ (q|p̂). But now it follows that

q∃θ ⇔
∨
p∈2H

θ (q|p)

That is, the truth value of q∃θ may be evaluated by testing the finite disjunction of all propositions

of the form θ (q|p) taken over p ∈ 2H .6

The implication of this in a game with awareness is stated in the next proposition.

Proposition 3 Fix a game with awareness G =
(

Γ, Z̃ (·)
)
. For all h ∈ H, and i = P (h),

h |=Γ bi (¬ (q∃uiq)) or, equivalently, h |=Γ bi (q∀aiq) ).

That is, individuals can never believe they are unaware of anything.

Proof. For any h′ /∈ HZ̃(h), the corresponding proposition ph′ is not an element of the set

2HZ̃(h) over which the unawareness operator in LΓZ̃(h)
is defined. On the other hand, for any

h′′ ∈ HZ̃(h), individual i is aware of ph′′ . Taking the logical closure, for any h̃ ∈ IZ̃(h) (h), and

any p ∈ LΓZ̃(h)
, h̃ |=ΓZ̃(h)

aip. Since this result holds when h is replaced by any h̃ ∈ IZ̃(h) (h), we

have bi (q∀aiq) which is logically equivalent to bi (¬ (q∃uiq)), as required.

Proposition 3 shows that, given the specification of LΓZ̃(h)
, including the existential quantifier ∃

which generates the set of existential propositions, the richer language LΓ is not expressive enough

to allow valid statements of the form ‘individual i believes that there exists some proposition q ∈
LΓ of which he is currently unaware’. This is not surprising. To say that a player believes that

there exist events of which he is unaware suggests, in some sense, that he is aware of those events,

which might be seen as violating the spirit of what it means to be unaware of something.7 On

the other hand, to the extent that individuals understand the structure of a game with aware-

ness, that understanding must encompass the possibility that their own awareness is incomplete.

This apparent contradiction suggests the need to consider modes of reasoning going beyond the

6 Similarly, the truth value of q∀θ may be evaluated by testing the finite conjunction of all proposition of the
form θ (q|p) taken over p ∈ 2H .

7 We owe this characterization of the result to an anonymous referee.
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semantic-syntactic model considered thus far. We argue below that the deductive reasoning char-

acteristic of the semantic-syntactic model must be combined with inductive reasoning about the

structure of the model itself.

Proposition 3 does not hold if unawarneness is modelled in terms of a distinction between

implicit and explicit knowledge, as in Fagin and Halpern (1988). With this representation, as

noted by Halpern and Rego (2011), unawareness may arise even in a static model with a single

state of the world. In such a model, individuals know any proposition that is in fact true and of

which they are explicitly aware, including the proposition q∃uiq.

4.1 Historical induction and induction over individuals

The most commonly used alternative to deductive reasoning is reasoning based on induction from

experience or observation. The general principle of induction considered in the philosophical

literature states that observations of members of some set S, all of which satisfy some property

φ, provide inductive support for the proposition ‘All members of set S satisfy property φ’. For

example, if a number of ravens are observed to be black, and none are observed to be any other

color we derive inductive support for the proposition ‘All ravens are black’.

As the famous example of black swans shows, inductive reasoning is never conclusive. It is

easy to define propositions that have always been true, but will cease to be true at some point

in the future, either because they inherently involve time dating (person i, now aged 20, has

always been younger than 21) or because the properties to which they refer change over time (US

population has always been less than 320 million). Moreover, it is possible to derive inductive

support for two or more propositions that may be logically inconsistent. For example, it is common

to use inductive arguments to predict the outcomes of Presidential elections (for example, that

no incumbent president has been re-elected if his approval rating is below x, or that incumbents

are always re-elected if the economy has improved during their term of offi ce). It will often be the

case that two such inductive arguments will point in opposite directions.

Under conditions of bounded rationality, however, no system of reasoning is absolutely reli-

able. Moreover, a judgement that it is appropriate to use deductive reasoning in some particular

context must be based on some prior process of reasoning that is not itself deductive. So, bound-

edly rational individuals may find it appropriate to employ a mixture of inductive and deductive

reasoning.

We begin by considering reasoning based on induction from experience (historical induction).

Informally, the principle of historical (or temporal) induction states that if a proposition has been

found to be true in many past instances, this fact provides support for belief that it will hold true

in the future. For example, the fact that the proposition ‘the sun will rise tomorrow’was true

yesterday, the day before and the day before that and so on, provides inductive support for the
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belief that the same proposition is true today.

Formally, we state it as follows.

Definition 16 (support by historical induction) Fix a game with awareness G =
(

Γ, Z̃ (·)
)

and a history h, and let i = P (h). Suppose that for some proposition p ∈ LΓZ̃(h)
,

h |=Γ biwp ∧ ¬biw¬p

then h |=Γ tip [read as ‘at h individual i regards p as supported by historical induction’].

That is, suppose at history h that individual i believes p to have been true at some past history

and does not believe p to have been false for any past history, then i regards p as supported by

historical induction.

In interactive games, the principle of induction may also be applied to reasoning about other

individuals. In the application here, the sets to which induction is to be applied will consist of the

set of individuals N . If individual i believes that some proposition is true for all other players,

then induction suggests that the same proposition is true for i.

To formalize this idea in our notation we define the following.

Definition 17 (support by induction over others) Fix a game with awareness G =
(

Γ, Z̃ (·)
)

and a history h, and let i = P (h). Let θ
(
j̃
)
be a Boolean combination of propositions in LΓZ̃(h)

and

a free variable j̃, defined as an element of the set of players N , such that θ
(
j̃
)
is the proposition

in which each instance of j̃ in θ (·) is replaced by j. Suppose that, for all j 6= i

h |=Γ biq (j)

Then, h |=Γ niθ (i) [read as ‘at h player i regards q (i) as supported by induction over the set of

players N − {i}’]

Thus players can use their observations of others to draw conclusions about themselves that

cannot necessarily be reached by deductive reasoning.

4.2 Inductive reasoning, awareness and unawareness

Our account of historical inductive reasoning about unawareness has a structure similar to that of

more familiar examples of historical induction. Over time, players become aware of propositions

that, previously, they have not considered. Thus, at any history h, players know that there exist

propositions of which they were unaware at some previous information set. That is, they know

that the existential proposition ‘there exists a proposition of which I am unaware’was true at

a previous information set. Indeed, they know that this existential proposition has been true at

all past histories, except perhaps recent histories in a period in which no new propositions have
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been discovered. Hence, the proposition that the future, like the past, will be characterized by

the discovery of new propositions, is supported by induction.8

On the other hand, players also learn positive lessons about their ability to understand partic-

ular subproblems in larger decision problems. So, they may become confident, when they perceive

a particular problem to be of limited complexity, that they will not be surprised by becoming

aware of unconsidered propositions relevant to their decision. The most important case, for our

purposes, will be the choice of a strategy in the continuation of a game from some information

set.

Suppose that for h′ ≺ h, player i becomes aware of previously unconsidered propositions in the
course of the partial history from h′ to h, so that LΓZ̃(h′)

⊂ LΓZ̃(h)
where the inclusion ⊂ is strict.

Then for propositions q ∈ LΓZ̃(h)
− LΓZ̃(h′)

we have h′ |=Γ uiq and h |=Γ aiq, so that h |=Γ wuiq.

Further, these evaluations hold for any h̃ ∈ IZ̃(h) (h), so that h |=Γ biaiq and h |=Γ biwuiq. That

is, at history h, the player (correctly) believes that there exist propositions of which she is now

aware, but was unaware in the past.

We have established that player i at h cannot express and therefore cannot believe (in the modal

logical sense of bi) propositions of the form ∃q ∈ LΓ : uiq. Nevertheless, given past experience of

discovery, it seems reasonable to suppose that the player may judge such propositions to be an

appropriate basis for actions and decisions. Given the dynamic temporal structure of the model

developed here, it is natural to consider whether historical/temporal induction can be used as a

basis for such judgements. Our next result provides a positive answer to this question.

Proposition 4 Fix a game with awareness G =
(

Γ, Z̃ (·)
)
that displays non-trivial increasing

awareness for i at h. Then h |=Γ ti (q∃uiq).

Proof. By non-trivial increasing awareness for i at h, there exists h′ ≺ h, in which LΓZ̃(h′)
⊂

LΓZ̃(h)
. Hence for a proposition p ∈ LΓZ̃(h)

− LΓZ̃(h′)
we have h |=Γ aip and h′ |=Γ uip, so that

h |=Γ wuip. By IN (information neutrality) these evaluations hold for all h̃ ∈ IZ̃(h) (h), so that

h |=Γ bi (q∃uiq) holds. From proposition 3 it follows that q∃uiq can never known to be false at

any h′ ≺ h, hence h |=Γ ¬biw (¬ (q∃uiq)) holds as well, implying h |=Γ ti (q∃uiq) as required.

Informally, given non-trivial increasing awareness, the player believes at h that, for at least

some past history, the proposition q∃uiq was true. On the other hand, this proposition can never

be known false. Hence, the player judges the proposition that her awareness is incomplete is

supported by historical induction.

8 A closely related argument is prominent in philosophical debates over ‘realism’, namely, the view that the
success of science reflects its correspondence to objective truth. Critics such as Laudan (1981) argue on the basis
of historical experience that, since successful theories have been proven false in the past, the success of a theory
cannot be regarded as evidence for its truth. Similarly, in our analysis, the fact that models used with some
success in decisionmaking have nonetheless been discovered to be incomplete in the past supports the view that the
model currently held by any given decisionmaker is also unlikely to be complete. However, we allow for increasing
awareness over time, and therefore for a model of the world that gradually converges towards the true model.
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Proposition 5 Fix a two-player game with awareness G =
(

Γ, Z̃ (·)
)
such that the restricted

game ΓZ̃(h) is not a game of common awareness. Then h |=Γ ni (q∃uiq)

Proof. Let i = P (h), and denote the other player by j. Since ΓZ̃(h) is not a game of common

awareness, ∃h′ ∈ HZ̃(h), with P (h′) = j, such that ΓZ̃(h′)∩Z̃(h) @ ΓZ̃(h). Hence, h |=Γ ni (q∃ujq).

But as there are only two players, this means that h |=Γ ni (q∃ukq) holds for (all) k 6= i which in

turn implies h |=Γ ni (q∃uiq) as required.

Proposition 5 is similar in its structure to Proposition 4. Given the belief on the part of i

that j is unaware of some propositions, inductive reasoning supports the proposition that i is also

unaware of some propositions.

If the future and past selves are considered as other agents, there is a natural linkage between

this idea and that of historical induction. The games perceived by the player P (h) in the past

were restrictions of the game she currently perceives to be playing, and this is known to her at h.

Similarly, other players from player P (h)’s perspective at h, must be imputed to perceive games

that are restrictions of ΓZ̃(h).

In summary, although the representation of a game with awareness presented here does not

allow for knowledge of unawareness in the standard modal logical, inductive reasoning and sym-

metry arguments can provide a basis for a judgement that there exist unconsidered possibilities

of which other players may be aware.

On the other hand, in a finite extensive game, players eventually reach a terminal history, at

which point they are aware of the full history of the game, at least insofar as it is relevant to the

payoff they receive. The fact that the game includes unrealised histories of which the player may

remain unaware is no longer relevant.

This point may be extended to suggest an inductive basis for identifying a ‘small world’, in

which it is reasonable for players to disregard the possible existence of unconsidered contingencies,

and act on the basis of Bayesian decision theory applied to the game they perceive. The crucial

requirement for a small world is not that the decisionmaker should be aware of all possible con-

tingencies (this requirement can never be met) but that she should be aware of all contingencies

relevant to the outcome of a particular decision. This condition is trivially (but unhelpfully) sat-

isfied at any terminal history of a game, since this is the point at which the outcome is actually

realised and players receive their payoffs.

More generally, given that unawareness arises from bounded rationality, it seems reasonable

to suppose that the more complex the game, the more likely it is that there exist unconsidered

contingencies. Further, for a history h, the more complex the continuation of the game from the

information set the player perceives to be in at h, the more likely it is that there exist unconsidered

contingencies. Since games that have reached a terminal history are minimally complex in this

sense, it seems plausible to argue that, as a game (as perceived by the player) ‘approaches the
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end’, it becomes easier for the player to consider all payoff-relevant contingencies.

Based on their past experience of the game (or, not modelled here, drawing on experience of

similar games) players may reason inductively as follows:

“In the past, I have found myself able to consider all relevant possibilities that might

arise in the next n moves. That is, previously unforeseen contingencies have come

to my attention at least n moves before they were actually realised. Hence, if the

continuation of the game I now perceive as relevant to my choices will end in no

more than n moves, induction supports the conclusion that I am aware of all relevant

contingencies.”

We begin by defining a proposition p as relevant (denoted ρip) at some information set I (h) if

the truth or falsity of p affects the continuation value of the game at I (h). We can now formalize

the proposition that player i is aware of all relevant propositions at h as

∀p (ρip⇒ aip) (4)

If (4) holds at I (h) , the continuation of the game at I (h) may be regarded as a ‘small world’

in the sense of Savage.

Next we need a measure of the complexity of the continuation of the game. There is a large

literature on the complexity of games, and a variety of measures have been proposed (state-

space complexity, game tree size, decision complexity and so on). These measures are developed

for games of full awareness (and mostly for games of perfect information). Fortunately for our

purposes, we require only that the complexity measure should satisfy some elementary properties.

We will use ξΓ (I) to describe a complexity measure of the continuation of the game Γ from

the information set I, and impose the properties:
C.1. Zero property: the measure should take the value zero at terminal histories.

C.2. Declining with learning: For any pair of information sets I and I ′ in Γ, I 6= I ′, and
P (h) = P (h′) = i for all h ∈ I, all h′ ∈ I ′ and some i ∈ N , if there exists h ∈ I and h ∈ I ′ such
that h � h′ then ξΓ (I) > ξΓ (I ′).

C3. Increasing with awareness. If Γ v Γ′, then ξΓ′ (I ′) ≥ ξΓ (I) for any I ⊆ I ′.
Property C.1 requires that all terminal histories are of equal and minimal complexity. Within

a given game, property C.2 entails that the complexity of the continuation game must decline

whenever a player makes a move (thereby eliminating some possible histories for that player).

Property C.3, on the other hand, requires that increasing awareness will, in general, increase the

complexity of the game.

We propose the following rule, which may be justified by historical induction over previous

games

Consider the following inductive principle
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Small World Principle: Treat the proposition ∀p (ρip⇒ aip) as inductively justified

whenever ξΓZ̃(h)

(
IZ̃(h) (h)

)
≤ ξ∗ for some constant ξ∗.

The Small World Principle cannot be guaranteed to avoid surprises. Sophisticated players will

understand this by virtue of Proposition 4 on inductive justification of unawaress. Nevertheless, use

of the Small World Principle for appropriate choices of ξ∗may lead to the adoption of ecologically

rational heuristics, in a sense that will be made precise below.

A related approach may be applied to reasoning about the awareness of other players. In

general, considerations of symmetry justify the conclusion that, if i is aware of possibilities of

which j is unaware, the converse is also true. In the language of complexity, we have no general

reason to suppose that ξ∗i is either greater than or less than ξ
∗
j . But in specific cases, i may indeed

be more capable of reasoning about the problem at hand, so that ξ∗i > ξ∗j . In this case, i may

conclude that she is aware of all relevant possibilities even though j is not.

4.3 Syntax and semantics of inductive reasoning about awareness

Space does not permit a full syntactic rendition of the model described above, in which players

hold inductively justified beliefs about their own awareness or lack of it. Such a rendition has been

developed by Walker (2011). In Walker’s rendition, the agent’s beliefs about whether or not she is

fully aware in any state (or history) depend on a conjecture about awareness that does not require

‘a comparison between her actual awareness and the domain of ‘things to be aware of’. As Walker

observes, a process of inductive reasoning such as that developed here provides a natural basis for

beliefs about whether or not the agent is fully aware of all relevant propositions, leaving beliefs

about particular propositions to be determined by the standard process of deduction from what

is true in states that are deemed possible given the available information set.

Walker develops this two-stage structure in detail and derives a semantic structure correspond-

ing to a language in which the string (in our notation) q∀aiq stands for the claim ‘the agent is fully

aware’. Walker shows that appropriate axiomatizations for this language are sound and complete

for semantic structures in which agents’ beliefs about their awareness may be supposed to be

derived from inductively justified conjectures.

Walker’s approach may be adapted to the extensive-form setting of the present problem. In

the context of an extensive-form game, what matters is not awareness of all propositions, but

awareness of all relevant propositions, as defined above. As shown above, player i can reach a

subjective judgement, based on inductive reasoning, as to whether they are, or are not, aware of

all relevant contingencies at any history h where P (h) = i, that is, whether h |= ∀p (ρip⇒ aip).

This enables us to define a semantic structure incorporating reasoning about awareness.

Now following the approach of Walker (2012) (but with a change of notation to fit our ex-

tensive form game model) we define the subjective interpretation relation |=∗Γ which coincides

28



with the objective relation |=Γ except for propositions regarding beliefs about awareness. The

critical change is that the interpretation relation h |=∗Γ bi (∀p (ρip⇒ aip)) holds if and only if

the proposition ∀p (ρip⇒ aip) is supported by inductive judgement for i at h, and more impor-

tantly, h |=∗Γ bi¬ (∀p (ρip⇒ aip)) if the proposition ¬ (∀p (ρip⇒ aip)) is supported by inductive

judgement for i at h.

Following Walker (2012) it would be possible to construct a characterization of the semantic

structures consistent with this interpretation relation. However, this is beyond the scope of the

present paper. Instead, our focus will be on the way in which inductively derived subjective beliefs

about awareness and unawareness may be used to guide individual decisions and strategic choices.

The key idea is that of heuristics.

5 Games Subject to Heuristic Constraints

We now develop a basis for making decisions that depend upon judgements about propositions

that cannot be expressed explicitly in the language of the game available to that player but are

nonetheless supported either on historical inductive grounds or by induction over individuals. We

refer to these to as heuristic constraints. Conversely, we consider heuristics that may be applied

to justify the adoption of a best response for the continuation of the game from an information

set. Combining these heuristics, we obtain a definition for a game subject to heuristic constraints.

A heuristic constraint for a particular player associated with the game they perceive to be

playing is an admissibility rule precluding the adoption by that player and her opponents of

certain strategies whenever a certain proposition that involves the player or her opponents taking

that action is supported either on historical inductive grounds or by induction over individuals.

For example, in the speculative trade example of Heifetz, Meier and Schipper (2006), we can

construct a heuristic constraint based on the proposition, ‘my opponent is aware of something

that I am not, and whatever it is, may result in me incurring a loss from trading with him.’The

corresponding heuristic constraint is not to engage in trade if the aforementioned proposition is

supported either on historical inductive grounds or by induction over individuals.

Formally we define a game with awareness subject to heuristic constraints as follows.

Definition 18 Fix a game with awareness G. An awareness-based heuristic H for the game

G is an admissibilty rule such that, for each h in H in which P (h) 6= c, H (h) ⊆ Z̃ (h) is a

subset of the terminal histories available in the game ΓZ̃(h) from the information set IZ̃(h) (h).

The restriction H (h) depends only on the perceived game ΓZ̃(h), and on the judgement of the

player at h as to whether she and/or her opponents are aware of all relevant possibilities and

generates a restricted game ΓH(h) v ΓZ̃(h). We denote by (G,H) the game with awareness G
that is subject to the heuristic constraints H. We denote by Hi the restriction of H to the set of
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histories {h : P (h) = i} .

Imposing heuristic constraints on a game with differential awareness means that the perceived

game in which the heuristic constraints may apply, is modified by removing all histories that

contain any actions that are precluded by the heuristic constraints. As the modified game is a

restriction of the original game, this means that its set of terminal histories are a subset of those

from the original game. This in turn implies that at any information set in the original game for

which a heuristic constraint precludes the choice of at least one action, there is at least one other

available action that is not precluded by any of the heuristic constraints that may apply.

We revise the definition of a strategy profile, so that in the game with awareness G subject
to the heuristic H, at each h the continuation behavioral strategy profile is defined for the game
ΓH(h).

The definitions of subjective probabilities, assessments and sequential rationality from subsec-

tion 2.4 can be modified accordingly with each instance of the game ΓZ̃(h) for history h, being

replaced by the (in general even more restricted) game ΓH(h) that excludes all histories that are

precluded by the adoption of the heuristic constraints. Thus we can extend the definition of a

sequential equilibrium to apply to games with awareness subject to heuristic constraints. This

definition requires that players, at each information set where they are called on to move, adopt a

best response to the equilibrium strategies of the continuation game they perceive at that informa-

tion set, excluding histories that are precluded by the adoption of their own heuristic constraints

and those of other players. This is a natural generalization of the standard assumption of common

knowledge of rationality, which applies to the game G.
As an immediate corollary to Proposition 2 we have:

Corollary 6 A sequential equilibrium exists for any game with differential awareness subject to

heuristic constraints.

As discussed above, we will confine attention here to the case when the equilibrium is unique.

5.1 Ecological rationality

A variety of criteria have been suggested for the adoption and evaluation of decision heuristics.

Goldstein and Gigerenzer (2002) propose a concept of ecological rationality for heuristics, explained

as ‘the capacity of the heuristic to exploit the structure of the information in natural environments’.

As an example, they consider the ‘recognition heuristic’ illustrated by the idea that a decision-

maker asked to estimate which of two cities has a larger population should choose one they have

heard of in preference to one they have not heard of. In an environment where mentions of cities

are positively correlated with their population, this heuristic is ecologically rational.
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In a game with awareness, the concept of ecological rationality may be seen as the way a

heuristic adopted by players with bounded awareness would be evaluated from the perspective

of a more aware player, or an external modeller aware of the maximal game. In a game with

increasing awareness, a player may evaluate the ecological rationality of their own heuristics,

applied early in the game, from the more aware perspective available later in the game.

It is not necessary to confine attention to the actual outcome realised subsequent to the adop-

tion of a heuristic. From the perspective of a more aware player (or from the perspective of a

player considering their own earlier state of awareness) it is possible to compare the decision rec-

ommended by a heuristic to the optimal decision recommended by Bayesian decision theory for

the full game, and also to the ‘naive’Bayesian decision derived for the restricted game. Even if,

by virtue of an unlucky draw by nature, the heuristic yields a bad outcome in a particular play

of the game, it may nonetheless be judged to be superior, in expected payoff terms, to the naïve

Bayesian decision.

Consider a game with awareness G =
(

Γ, Z̃ (·)
)
, subject to heuristic constraints H. Let H−i

be the heuristic obtained from H by removing any constraints for information sets controlled by

player i. That is, H−i (h) = H (h), if P (h) 6= i and H−i (h) = Z̃ (h), if P (h) = i. We adopt the

following definition.

Definition 19 Consider a game with awareness G =
(

Γ, Z̃ (·)
)
, subject to heuristic constraints

H. The heuristic constraints H are ecologically rational for player i if

V iΓ (r′) ≥ V iΓ (r)

where r (respectively, r′) is the behavioral rule generated by the sequential equilibrium (β,µ) for

(G,H) (respectively, sequential equilibrium
(
β′,µ′

)
for (G,H−i).)

It is important to note that the ecological rationality of H cannot be determined from within

the ΓZ̃(h) available to player i = P (h) at a particular history h. Ecological rationality can be

determined,however, by an unboundedly rational external modeller with access to the full aware-

ness game Γ. More relevantly from the perspective of actual players, the belief that a particular

heuristic is ecologically rational in a given setting may be justified inductively on the basis of its

past performance in similar settings.

5.2 Example Part 2:

We now return to the speculative trade example of Heifetz, Meier and Schipper (2006). By

Proposition 5, for each party i = 1, 2, the proposition ∃q ∈ LΓ : (ujq ∧ aiq) is true for j 6= i.
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Moreover, in the given example, the proposition can be extended to

θ (qαj ) ≡ ∃q ∈ LΓ

(
ujq ∧ aiq ∧

(
q ⇒ qjloss

))
, (5)

where αj is the action necessary for j to take in order to transact with i and qjloss is the proposition

the transaction produces a loss for j.9

Now let party i consider the proposition ∃q ∈ LΓ : (uiq ∧ ajq), that is, that there exists a
proposition of which she is unaware, but the other party is aware. As shown above, inductive

reasoning, embodying the idea of symmetry, provides support by induction over the set of indi-

viduals for the existential proposition ∃q ∈ LΓ :
(
uiq ∧ ajq ∧

(
q ⇒ qiloss

))
, so we have for both

h1 = 〈α0, α0〉 and h2 = 〈α0, α0, α1〉,
hi |=Γ niθ (qαi) .

Let us take R (h) ⊆ Z̃ (h) to be the set of terminal histories in the game ΓZ̃(h) that passes through

IZ̃(h) (h) and that includes an action α̂i ∈ AZ̃(h) that leads to a loss in the event that some

unforeseen proposition q holds. We can then define the heuristic Hi (h) = Z̃ (h) − R (h) that

precludes the adoption of α̂i by party i. If either the buyer adopts the heuristic H1 or the owner

adopts the heuristic H2, then the transaction will not take place.

Now compare the dominance principle proposed by Heifetz, Meier and Schipper (2006). Heifetz,

Meier and Schipper propose that if (i) in all histories h′ an agent considers possible at h, action

α leads to at least as good an outcome as α′, and (ii) in some possible history, action α leads to a

better outcome, then the agent should choose α. As shown above, this principle leads the players

to engage in trade, even though, in the minimal game of common awareness the trade generates

zero surplus. Each party’s own perceived game with awareness suggests a strictly positive surplus

from trade for the player concerned, coming at the expense of the other party.

In the given example, this principle does not appear compelling. Even though this condi-

tion is satisfied for the modal-logical interpretation of ‘considers possible’(namely h′ ∈ Ii (h)),

observation of the limited awareness of other individuals, combined with principles of symmetry

between individuals, provides inductive support for the proposition in expression (5). Noticee

that, evaluated in the fully aware game, (5) is in fact true for both individuals.

A potential problem with this analysis is that it might lead to the conclusion that individuals

should never trade in the presence of differential awareness. However, this conclusion only arises

in the case where there are no gains from trade, as in the given example. If both parties evaluate

the transaction as mutually beneficial on the basis of their own awareness, there is, in general,

no reason for them to conclude that this mutual benefit would not persist under full awareness.

9 Recall in the specification of the game that for party 1 the buyer, α1 corresponds to the action ‘make an offer
of 1’ (action α1 in figures 1—4) and for party 2, the owner, α2 is the action ‘accept the offer of 1’ (action αA in
figures 1—4).
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In particular, the fact that party 2 is willing to engage in trade does not imply that she must be

aware of a contingency that would make the trade less appealing to party 1.

6 Applications

In this section, we sketch two applications, in which heuristics may be used as a way of responding

to unawareness. Both applications deal with problems that may be addressed in terms of indi-

vidual decisions (that is, one-person games with Nature) or in a multi-player context. For ease of

exposition, we will focus here on the case of individual decision.

6.1 Research and Discovery

In some circumstances, unforeseen possibilities are both desirable and essential. The allocation

of funds for research and development (R&D) provides an example. It is inherent in the concept

of pure research that investigators cannot predict what they may discover. By contrast, the

uncertainties associated with the development phase of R&D are well understood in most cases,

and may reasonably be modelled in a Bayesian framework. The contrast between research and

development raises obvious diffi culties in the allocation of funds. A common response is to require

research proposals which purport to contain accurate predictions of the path of research for which

funding is supported.10 However, this does not appear to be a satisfactory solution.

This problem may be addressed by modelling the situation as a game with awareness. For

simplicity, we will abstract from the interactive aspects of the problem and consider a decision-

maker playing a one-person game against nature with awareness. Let
(
β0,µ0

)
denote her (unique)

sequentially rational and consistent assessment and let r0 denote the associated behaviorial rule

generated by β0.

At some history h she is considering whether to allocate funds to one of a set of research

projects, and if so which one. The alternative is to allocate the funds to a development project,

where we assume there are no unconsidered outcomes. For ease of exposition (and without essential

loss of generality) assume that I (h) = IZ̃(h) (h) = {h}. That is, the decisionmaker believes she is
at history h (and from the perspective of the fully aware game she actually is at history h).

At h, the decisionmaker faces the set of available actions A (h) = {a0, a1, . . . , aK}, leading
to the set of histories {h0, h1, . . . , hK}, where hk = 〈h · ak〉. Here a0 denotes the choice of the

development project, while ak, k = 1, . . . ,K are research projects. We assume that the complexity

of the subgame starting at h0 is less than ξ, while for k > 0, the complexity of the subgame starting

at hk is greater than ξ.

10 One common way of meeting this requirement is to seek funding for research that is effectively complete, but
has not yet been published.
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In the absence of unconsidered contingencies, let us suppose her unique best continuation

strategy β0
h from the sub-game starting at h entails selecting the development option at h, that is,

β0
h (h) = a0. We normalize by setting VΓ̃Z(h)

(
β0
h

)
= VΓ (r0) = 0. That is, resources used for any

project are evaluated in terms of the opportunity cost associated with the development option.

For each k = 1, . . . ,K, let βk denote the continuation strategy that agrees with β
0
h at every

information set in the subgame starting at h, except initially where βk (h) is equal to ak. And let(
β0
−h, βk

)
denote the corresponding modified strategy profile for the entire game with awareness.

Since β0
h is the unique best option for the subgame starting at h, it follows that V

i
Γ̃Z(h)

(βk) < 0,

for all k = 1, . . . ,K. That is, based on current awareness, the development project yields higher

expected returns than any of the research projects. Hence, the unconstrained heuristic H−i (which
may also be denoted H0 in the context of individual decision) will lead to the choice of a0 at h.

Now suppose she has suffi cient experience to provide inductive support for some proposition

of the form:

‘For problems of complexity greater than ξ, there may exist contingencies of which I

am unaware.’

Hence the decisionmaker believes herself to be aware of all contingencies relevant after a choice

of a0 but not for any choice ak, k > 0.

Then, given a ‘research budget’of B, we may consider the heuristic HB :

“Exclude a0 from consideration unless V i
Γ̃Z(h)

(βk) < −B, for all k = 1, . . . ,K.”

This leads to the behavorial rule that at h prescribes the following: ‘Choose ak (that is, un-

dertake the research project k) that maximizes V i
Γ̃Z(h)

(βk), provided V i
Γ̃Z(h)

(βk) ≥ −B. Otherwise
choose a0.

The heuristic allows for the choice of a research project rather than the ‘safe’development

option whenever the expected net cost, based on the possibilities already under consideration, is

less than the research budget B. The quantity B might be considered as a value at risk constraint.

In addition to the benefits that may be evaluated in advance, the research project may generate

valuable discoveries, associated with awareness of previously unconsidered possibilities. If we

denote by rk the behavioral rule generated by the strategy profile
(
β0
−h, βk

)
, then the full value of

a project, which may be estimated by a fully aware outside observer, but not by the decisionmaker,

is VΓ (rk) . In this context, we assume that, for all k, the benefits of discovery are non-negative, so

that, V iΓ (rk) ≥ V i
Γ̃Z(h)

(βk).

Proposition 7 The following conditions are suffi cient for HB to be ecologically rational:
(a) 1

K

∑K
k=1

(
V iΓ (rk)− V i

Γ̃Z(h)
(βk)

)
≥ B; and

(b)
(
V iΓ (rk)− V i

Γ̃Z(h)
(βk)

)
is positively correlated with V i

Γ̃Z(h)
(βk).
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The first condition states that on average, the value of unanticipated discoveries exceeds the

research budget B. Given this condition, the second condition ensures that the expected return

from choosing the project with maximal expected net value (as perceived by the decisionmaker)

will exceed B, and therefore be preferable to the development option.

As already noted, a crucial feature of ecological rationality is that it cannot be evaluated within

the perspective available to a decisionmaker at h who perceives the game ΓZ̃(h). Conversely, the

heuristic HB which may be judged as ecologically rational by an outside observer under the given
conditions, can be implemented by the decisionmaker without requiring awareness of the full game

Γ.

Thus, one interpretation of the heuristic is that it represents the advice that would be given

by an unboundedly aware expert to a decisionmaker who must make decisions under conditions

of bounded awareness.

6.2 The precautionary principle

The precautionary principle, presented as a guide to environmental policy decisions in the presence

of uncertainty, has been the subject of vigorous debate (Wingspread 1998). However, discussion of

the principle as a decision-theoretic rule has mostly relied on the (normally implicit) assumption

that decision makers are unboundedly rational and aware of all possible contingencies. In this

context, the precautionary principle has been criticized as involving inconsistency (Marchant and

Mossman 2005, Sunstein 2005) or excessive risk aversion (Miller and Conko 2005) and defended

as a way of capturing option value (Gollier, Jullien and Treich 2000). It is evident, however, that

in a fully specified decision-theoretic model, with all contingencies taken into account, and an

appropriately specified objective function, there should be no need for additional heuristic rules

such as those of the precautionary principle.

When the limited awareness of participants in decision processes is taken into account, however,

the precautionary principle seems more appealing. Given the bounded rationality of human agents,

it is impossible to enumerate all relevant possibilities. This point is sometimes expressed with

reference to ‘unknown unknowns’, that is, relevant possibilities of which we are unaware.

The case for the precautionary principle arises when a decisionmaker, such as a regulator, is

faced with a choice between alternatives, one of which leads to consequences for which the relevant

elements of the state space are well understood and the other which leads to consequences that

depend to a significant extent on ‘unknown unknowns’. If most surprises are unpleasant, a risk

analysis based only on known risks will underestimate the costs of choices of the second kind.

That is, standard risk analysis leads to a bias in favour of taking chances on poorly-understood

risks. The precautionary principle may be seen as a rule designed to offset such biases.

Grant and Quiggin (2012) consider the case of a decisionmaker, faced with an uncertain choice,
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who has available a ‘safe option’, yielding a return that can be normalized to zero, and conditional

on which the decisionmaker judges (by induction) that there are no relevant propositions of which

she is unaware. Grant and Quiggin say that a behavioral rule other than the safe option is ‘subject

to unfavorable surprises’‘there exist unconsidered moves by Nature, against which the payoff from

the behavioral rule r is less than zero. They define the Strong Form of the Precautionary Principle

as the heuristic that excludes behavioral rules subject to unfavorable surprises, and show that the

Strong Version of the Precautionary Principle is ecologically rational if and only if V (r0) < 0,

where r0 is the behavioral rule associated with the unconstrained heuristic H−i (which, in the
context of individual decision may be denoted H0). Grant and Quiggin also define a weaker form

of the Precautionary Principle and derive conditions for ecological rationality.

In a multi-agent context, regulatory decisions typically involved assessment of proposed actions

seen as raising possible risks. In this context, the precautionary principle may be understood, as a

procedural constraint, putting the burden of proof on to proponents of decisions involving poorly-

understood risks. If the proponent can provide suffi cient information to satisfy the regulator that

all relevant contingencies have been considered, standard principles of decision analysis may be

applied to justify a proposal. If not, the regulator may choose to apply the precautionary principle

and reject the project even in the absence of a negative benefit—cost evaluation.

7 Concluding comments

The model presented in this paper has incorporated the minimal deviations from the standard

case of an extensive form game necessary to allow a representation of inductive reasoning about

differential awareness and to model possible behavioral responses. The analysis presented here

could be extended in a number of ways.

First, the model presented here allows players to become aware of previously unconsidered

possibilities, but not to forget about possibilities they have previously considered. To the extent

that unawareness reflects bounded rationality, this seems unreasonable, since the model accessible

to players becomes steadily more complex. A desirable property for a representation of bounded

awareness is that the bound should be determined by limits on reasoning capacity which should

be constant over time or at least should not increase monotonically

It would be desirable, therefore, to extend the analysis to allow for imperfect recall. The

simplest version of imperfect recall is to suppose that individual i at (perceived) information set

IZ̃(h) (h) forgets about some or all histories that do not pass through IZ̃(h) (h) , since these histories

involve actions (by player i, some other player j, or Nature) known by i not to have been taken.

In the context of individual decision, such histories are strictly irrelevant, but in a game-theoretic

context, the fact that they have not been chosen may inform reasoning about the other players.

More generally, individuals may forget the details of their past history.
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In the present paper, the perception mapping is taken to be exogenous, subject only to the

restriction that players must always consider some history possible. A natural extension would

be to consider games in which awareness is derived naturally from the tree structure of the game.

For example, we might impose the requirement that players are always aware of actions when they

become available.

Finally, the relationship between equilibrium and awareness could be explored further. As

we have argued, differential awareness means that players will, in general, arrive at information

sets they previously regarded as being off-equilibrium. This would appear to rule out equilibrium

concepts that admit arbitrary actions at off-equilibrium information sets, and therefore to mitigate

the problem of multiplicity of equilibria. On the other hand, since changes in awareness imply, in

general, changes in the perceived set of equilibria, diffi culties may arise for notions such as forward

induction, to the extent that they rely on the use of apparent deviations from equilibrium to make

inferences about other players.

Much work remains to be done. However, the model presented in this paper allows for a

coherent account of behavior in games where players are not, in general, aware of all possibilities

and understand this fact. This seems likely to yield a more plausible account of actual behavior

than a framework based on the assumption that all players are unboundedly rational and that

this is a matter of common awareness.

A Appendix:

Proof of Proposition 2. By standard arguments (for example Osborne & Rubinstein [1994,

p227]) it follows that an assessment is sequentially rational (β,µ) if and only if it satisfies the

one-shot deviation property. That is, at each h, for the behavioral strategy βP (h)
h of player P (h)

in the continuation of the game ΓZ̃(h), there is no subsequent information set IZ̃(h) (h′), with

P (h′) = P (h) in the continuation of the game at which a change in βP (h)
h (h′) increases his payoff

conditional on reaching IZ̃(h) (h′).

Therefore we will first establish the existence of a trembling-hand equilibrium for the agent-

normal form of G, which by the one-shot deviation property also constitutes a trembling hand
equilibrium of G. It will then suffi ce to show that for any trembling hand equilibrium strategy

profile β, their exists a subjective probability system µ such that (β,µ) is a sequential equilibrium.

We take the agent-normal form of the game with awareness
(

Γ, Z̃ (·)
)
, to be the game with

awareness
(

Γan, Z̃ (·)
)
, where Γan is the agent normal form Γ, in which there is one player for

each information set in the extensive form game and where player h is imputed to be playing

Γan
Z̃(h)

the agent normal form of ΓZ̃(h). For each h, denote the perturbation of the game Γan
Z̃(h)

by

first fixing the strategies of all players h′′, such that there exists h′ ∈ IZ̃(h) (h) and h′′ � h′ and
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h′′ 6= h′ (i.e. player h′′ is a player has already moved by the time the game reaches the information

set IZ̃(h) (h)) and then letting the set of actions of each player h′′, such that there exists history

h′ ∈ IZ̃(h) (h) and h′ � h′′ (i.e. player h′′ is a player who moves in the continuation of the game

Γan
Z̃(h)

after information set IZ̃(h) (h)) be the set of mixed strategies in AZ̃(h) (h′′) ∩ AZ̃(h′′) (h′′)

that assign probability of at least εah′′ (h) to each action that player h (at h) imputes to player

h′′ at her information set IZ̃(h) (h′′). That is, this constrains h and every player who follows h to

use every strategy h imputes that they have available with some minimal probability. Consider

a sequence of such perturbed games in which εah′′ (h) → 0, for all h, for all h′′ and a; by the

compactness of the set of strategy profiles, some sequence of selections
(
βk
)
from the sets of

strategy profiles that are sequentially rational for all i, of the games {Γan
Z̃(h)

: h ∈ H} converges to
say β.

Take the sequence
(
βk
)
. At each information set I (h) define the belief µh′ for each h

′ in I (h),

to be the limit of the beliefs defind from
(
βk
)
using Bayes rule, (β,µ) is then by construction a

consistent assessment. Since the strategies are completely mixed as can be done consistently, each

information set consistent with each player’s level of awareness is reached with positive probability

and each agent’s strategy is a best response when the beliefs at each information set are defined

by µ. Thus (β,µ) is a sequential equilibrium. �
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Figure 1: The maximal game Γ which starts at the chance node in the center.
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Figure 2: Γ1, the Game the Buyer Perceives He is Playing, which starts at the chance node in the
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40



~
α0

~

(­L, 0) (0, ­L)

(0, 0) (0, 0)

α0

αl

α1

αA αR

αA αR

α0

α0

α1

(­L, 0)

(0, 0)

I1

I2

2

2

2Γ

Figure 3: Γ2, the game the owner perceives she is playing, which starts at the chance node on the
left.

~
α0

~

(0, 0) (0, 0)

α0

α1

αA αR

α0

Γ

(0, 0)

3

Figure 4: Γ3, the game of common awareness for the two players, which starts at the chance node
on the left.

41



PREVIOUS WORKING PAPERS IN THE SERIES 

RISK AND UNCERTAINTY PROGRAM 
 
R03_1 Bargaining power and efficiency in principal-agent relationships, Robert G 

Chambers and John Quiggin (August 2003). 

R03_2 Information and the risk-averse firm, Robert G. Chambers and John Quiggin 
(2003). 

R03_3 Narrowing the No-Arbitrage Bounds, Robert G. Chambers and John Quiggin 
(2003). 

R03_4 Separability of stochastic production decisions from producer risk preferences in 
the presence of financial markets, Robert G Chambers and John Quiggin (2003). 

R03_5 Comparative statics for state-contingent technologies, Robert G Chambers and 
John Quiggin (2003). 

R03_6 Dual structures for the sole-proprietorship firm, Robert G Chambers and John 
Quiggin (December, 2003). 

R04_1 Output price subsidies in a stochastic world, Robert G Chambers and John 
Quiggin (2004). 

R04_2 Supermodularity and risk aversion, John Quiggin and Robert G Chambers (March 
2004). 

R04_3 Linear-risk-tolerant, invariant risk preferences, Robert G Chambers and John 
Quiggin (April, 2004). 

R04_4 Increasing uncertainty: a definition, Simon Grant and John Quiggin (May 2004) 

R04_5 Supermodularity and the comparative statics of risk, John Quiggin and Robert G 
Chambers (June, 2004). 

R04_6 Fixed wages and bonuses in agency contracts: the case of a continuous state 
space, Maria Racionero and John Quiggin (June, 2004). 

R04_7 Games without rules, Flavio Menezes and John Quiggin (July, 2004). 

R04_8 The risk premium for equity: implications for resource allocation, welfare and 
policy, Simon Grant and John Quiggin (August, 2004). 

R04_9 Capital market equilibrium with moral hazard and flexible technology, John 
Quiggin and Robert G Chambers (September, 2004). 

R05_1 The state-contingent approach to production under uncertainty, John Quiggin and 
Robert G Chambers (January, 2005). 

R05_2 Economists and uncertainty, John Quiggin (April, 2005). 

R05_3 Cost minimization and asset pricing, Robert G Chambers and John Quiggin 
(2005). 

R05_4 Consistent Bayesian updating with unconsidered propositions, Simon Grant and 
John Quiggin (February, 2005). 



R05_5 Comparative risk aversion for state-dependent preferences, John Quiggin and 
Robert G Chambers (May, 2005). 

R05_6 Outcomes and strategy choices in Tullock contests, Flavio Menezes and John 
Quiggin (March, 2005). 

R05_7 Learning and Discovery, Simon Grant and John Quiggin (July 2005). 

R06_1 Dual approaches to the analysis of risk aversion, Robert G Chambers and John 
Quiggin (June, 2006). 

R06_2 Efficiency analysis in the presence of uncertainty, Chris O’Donnell, Robert G 
Chambers and John Quiggin (May, 2006). 

R06_3 Lost in translation: honest misunderstandings and ex post disputes, Simon Grant, 
Jeff Kline and John Quiggin (August, 2006). 

R07_1 Estimating complex production functions: The importance of starting values, 
Mark Neal (January, 2007). 

R07_2 Risk and derivative price, Yusuke Osaki (2007). 

R07_3 A risk-neutral characterization of optimism and pessimism, and its applications, 
Yusuke Osaki and John Quiggin (2007). 

R07_4 Can game theory be saved? Flavio Menezes and John Quiggin (August, 2007). 

R07_5 Bargaining power and efficiency in insurance contracts, John Quiggin and Robert 
G Chambers (April 2007). 

R07_6 Sharp and diffuse incentives in contracting, Flavio Menezes and John Quiggin 
(2007). 

R07_7 Markets for influence, Flavio Menezes and John Quiggin (July, 2007). 

R07_8 Event-specific data envelopment models and efficiency analysis, Robert G. 
Chambers, Atakelty Hailu and John Quiggin (2007). 

R08_1 Generalized invariant preferences: two-parameter representations of preferences 
by Robert G Chambers and John Quiggin (February, 2008). 

R08_2 Bounded rationality and small worlds, Simon Grant and John Quiggin (June, 
2008). 

R09_1 Inductive reasoning about unawareness, Simon Grant and John Quiggin (June 
2009). 

R09_2 Markets for influence, Flavio M. Menezes and John Quiggin (September, 2009). 

R09_3 A matter of interpretation: bargaining over ambiguous contracts, Simon Grant, 
Jeff Kline and John Quiggin (November, 2009). 

R10_1 The computation of perfect and proper equilibrium for finite games via simulated 
annealing, Stuart MacDonald and Liam Wagner (April, 2010). 

R10_2 Uncertainty and technical efficiency in Finnish agriculture: a state-contingent 
approach, Céline Nauges, Christopher O’Donnell and John Quiggin (2010). 

R10_3 Production under uncertainty: a simulation study, Sriram Shankar, Chris 
O’Donnell and John Quiggin, (2010). 

R10_4 Economics as a social science: financial regulation after the crisis, John Quiggin 
(2010). 



R11_1 More competitors or more competition? Market concentration and the intensity of 
competition, Flavio M. Menezes and John Quiggin (August 2011). 

R11_2 A two-parameter model of dispersion aversion, Robert G Chambers, Simon 
Grant, Ben Polak and John Quiggin (August 2011). 

R11_3 Intensity of competition and the number of competitors, Flavio M Menezes and 
John Quiggin (June, 2011). 

R11_4 A matter of interpretation: ambiguous contracts and liquidated damages, Simon 
Grant, Jeff Kline and John Quiggin (September, 2011). 

R11_5 Capabilities as menus: A non-welfarist basis for QALY evaluation, Han 
Bleichrodt and John Quiggin (October, 2011). 

R12_1 Differential awareness ambiguity, and incomplete contracts: a model of 
contractual disputes, Simon Grant, J Jude Kline and John Quiggin (December, 
2012). 

R12_2 Optimal access regulation with downstream competition, Tina Kao, Flavio 
Menezes and John Quiggin (March, 2012). 

R12_3 Inductive reasoning about unawareness, Simon Grant and John Quiggin (April, 
2012). 

R12_4 Bounded awareness, heuristics and the precautionary principle, Simon Grant, 
John Quiggin (April, 2012). 

R12_5 A matter of interpretation: ambiguous contracts and liquidated damages, Simon 
Grant, Jeff Kline and John Quiggin (May, 2012). 

R12_6 Meeting the competition: commitment and competitive behaviour, Tina Kao, 
Flavio Menezes and John Quiggin (December 2012). 

R13_1 Inferring the strategy space from market outcomes, Flavio Menezes and John 
Quiggin (January, 2013). 

R13_2 The value of information and the value of awareness, John Quiggin (January, 
2013). 

R13_3 A theory of strategic interaction with purely subjective uncertainty, Simon Grant, 
Idione Meneghel and Rabee Tourky (June, 2013). 

R13_4 Ordinal, nonlinear context-dependence, Patrick O’Callaghan (May, 2013). 

 

 

 

 

 


	Cover page R12_3
	Risk and Uncertainty Program
	TITLE: Inductive Reasoning About Unawareness
	AUTHORS:
	Simon Grant and John Quiggin
	Working Paper: R12_3
	RSMG Working Paper Series

	RSMG Working Paper R12_3
	Cover page R12_3
	TITLE: Inductive Reasoning About Unawareness
	Authors:
	Simon Grant and John Quiggin
	Working Paper: R12_3
	RSMG Working Paper Series

	RSMG Working Paper R12_3
	Cover page R12_2
	R12_2 text


	PREVIOUS WORKING PAPERS IN risk and Uncertainty

