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1 Introduction

Language is a matter of interpretation, and interpretations will differ. This fact is of fundamental

importance in the construction of contracts, which are written or verbal agreements that the

parties act in particular ways under particular conditions. For any contract to be successfully

implemented, the parties must agree on whether the relevant conditions apply. A contract that is

ambiguous, in the sense that parties may differ in their interpretation of the conditions that apply

(and therefore of the actions that are required, will lead to disputes) and, ultimately, litigation.

To avoid disputes, parties to a contract may seek to avoid ambiguous terms, even when the

resulting contract is incomplete, in the sense that opportunities for risk-sharing or productive

cooperation are foregone. For example, parties may adopt a standard contract, in which the

terms are well-defined as a result of established precedents, even if a variation on the standard

contract could potentially yield a Pareto improvement.

The central point that ambiguous contractual terms can lead to incomplete but nevertheless

ex ante efficient contracts has received relatively little attention from economists.1 This is because

contracts are typically modelled as state-contingent acts, with incompleteness arising from the fact

that some states may be non-contractible or from state-contingent preferences that are ambiguous,

in the technical sense that there exists no well-defined probability distribution over the state space.

The language in which contracts are written is either not specified or is derived from the state

space.

In this paper, we begin with a syntactic approach, in which the set of contingencies and the set

of actions expressible in a common language available to the two parties are taken as primitive.

In this approach, a contract is a set of conditional actions, built up using contingencies that

can be expressed using the contractual terms available in the common language. We consider

contracts between two parties using the same contractual language, but with possibly different

interpretations of the contingencies specified in the contract. We define possibility of dispute

relations that specify the pairs of contingencies over which the two players might be in dispute.

1 Exceptions include Mukerji (1998), Mukerji & Tallon (2001), Board & Chung (2007, 2009), Filiz-Ozbay (2010)
and Grant, Kline & Quiggin (2011).
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It is natural for a party to consider the range of outcomes that might arise given the ambiguity

he or she perceives to be associated with the range of possible interpretations by the other party.

We show how this can give rise to preferences that may be represented by the ε-contamination

model commonly used to represent preferences averse to state-contingent ambiguity. Thus, our ap-

proach establishes a connection between aversion to syntactic or linguistic ambiguity (the sense in

which the term ‘ambiguity’ is normally found in ordinary usage) and semantic or state-contingent

ambiguity (the sense in which the term is commonly used in decision theory).

In Section 4, we consider the contractual specification of damages to apply when one party is

unable (or finds it undesirable) to fulfil their contractual obligations. In particular, we consider

‘liquidated damages’ contracts which specify a constant payment for the case of default. We are

able to show in Proposition 4 that liquidated damages contracts are ex ante efficient when the

aversion to ambiguity is sufficiently high. In general, we observe a trade off between risk sharing

and ambiguity. When the aversion to ambiguity is small enough, the benefits of risk sharing

dominate and more complete contracts are efficiently chosen. When aversion to ambiguity is large,

liquidated damages contracts are chosen. It is natural to ask whether the efficiency of liquidated

damages contracts obtains in the standard state-space approach. We show in Proposition 5 that

it does not.

Efficiency arguments for default clauses in contracts in the economics literature date back to

Shavell (1980), and are elaborated in Che and Chung (1999). The efficiency of such contracts rest

on investment and default incentives. These papers treat risk neutral parties in the absence of

ambiguity, so there is no contractual rationale for risk sharing or ambiguity aversion.

In contrast, we treat risk averse and ambiguity averse parties. Chung (1991) pointed out the

difficulty of simple contracts being efficient when both parties are risk averse. Nevertheless, we

find that liquidated damages contracts can be efficient when coupled with ambiguity aversion.

Motivations for liquidated damages given in the legal literature are more in line with our

approach. As argued by Hillman (2000, p. 732):

“Because people do not like ambiguity, contracting parties may prefer the safety of a liquidated

damages provision over the uncertainty of expectancy damages.”
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Similarly, Goetz and Scott (1977, p. 557) explain:

“The expected cost of establishing true losses under conventional damage measures will thus

induce parties who face uncertain or unprovable anticipated losses to negotiate stipulated damage

agreements.”

The efficiency of liquidated damages contracts in our model rests on the aversion to ambiguity

being sufficiently pronounced to induce the parties to forgo risk sharing opportunities in default

states. In general, however, efficient contracts exploit risk sharing opportunities in non-default

states.

The paper is organized as follows. In section 2, we set up a formal test-based language in

which contracts are specified and derive a representation for preferences in the absence of ambi-

guity. Next, in Section 3, we develop the concept of contractual ambiguity, and derive preferences

over ambiguous contracts using an ε-contamination model. In Section 4 we apply our model to

give some results on liquidated damages contracts. In Section 5 we discuss the implications of

our analysis and its relationship to the existing literature on incomplete contracts and bounded

rationality.

2 Tests, actions and contracts

We consider two parties i = 1, 2. Following the approach of Blume et al. (2006), we assume that

both players have access to a non-empty set of primitive test propositions T0 = {t1, ..., tK} and a

set of actions A0. Let T denote the closure of T0 under conjunction (∧) and negation (¬). We use

t ∨ t′ as an abbreviation for ¬(¬t ∧ ¬t′).

For the semantics, we follow Blume et al. (2006) and use a state space that is equivalent to

their set of atoms over primitive tests. We set Si = S = {0, 1}K for i = 1, 2, with |S| = 2K .

Hence a state s is a vector of zeroes and ones (a binary number) where the kth component of

s denotes the result of test tk in state s, with 0 (respectively, 1) corresponding to the result of the

test is ‘not true’ (respectively, ‘true’). We use rk (s) to denote the kth component of s.

For convenience we denote by s0 the state (0, 0...0), by s1 the state (0, 0...0, 1), and so on up

to s[|S|−1] for the state (1, ..., 1).

3



A test interpretation is a function π : T → 2S, where π (t) is the set of states in which the

test t is true. The state space S = {0, 1}K induces a test interpretation constructed as follows.

For each tk in T0, set π(tk) = {s ∈ S : rk (s) = 1}. The test interpretation is then inductively

extended to tests in T by the rule: for any t, t′ ∈ T , π(t∧ t′) = π(t)∩π(t′), and π(¬t) = S−π(t).

Conversely, each state s ∈ S can be identified with a test t(s) = t1 (s)∧ ...∧ tK (s) ∈ T defined

as follows. For each k = 1, ...,K let:

tk(s) =






tk if rk (s) = 1;

¬tk if rk (s) = 0.

By construction π(t(s)) = {s} meaning the test t(s) is satisfied only at the state s.

We are interested in the set of contracts C, which are constructed inductively from the set of

actions A0 and the set of tests T by taking the closure under the ‘if-then-else’ construction. That

is, we take each a in A0 to be a contract, and then we require, for any pair of contracts c and

c′ and any test t in T , that the program ‘if t then c else c′’ should be a contract in C. This

contract requires the parties to follow the course of action as determined by contract c if test t is

satisfied and follow the course of action as determined by contract c′ otherwise.

For any a ∈ A0, fa is the unconditional act fa (s) = a for all s ∈ S. Fix a pair of contracts c

and c′ in C with associated state-contingent actions fc and fc′ . Then for any test t in T , the state-

contingent action associated with the contract c′′ = ‘if t then c else c′’ is given by fc′′ (s) = fc (s)

if s ∈ π (t), and fc′′ (s) = fc′ (s) if s /∈ π (t). It follows from the inductive construction of the set

of contracts above that for each c in C, there is an associated ‘state-contingent’ act fc : S → A0.

Conversely, for a given act f : S → A0, we can define the associated canonical contract cf

with an exhaustive specification given by

if t (s0) then f (s0) else if t (s1) then f (s1) else ...

else if t
(
s[|S|−2]

)
then f

(
s[|S|−2]

)
else f

(
s[|S|−1]

)

Consider now the individuals’ ‘ambiguity-free’ preferences defined over the set of contracts C.

These should be interpreted as the players’ preferences over contracts in the absence of any con-

sideration of possible disputes. That is, these are the preferences each player would have, under
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the assumptions that the other party has the same understanding of the tests used to specify

the contract, and that the contract is implemented according to this shared understanding. In

the next section, we consider the possibility of a dispute arising from different interpretations of

‘ambiguous’ tests.

We assume these preferences admit a representation of the following form: there exists for each

state s in S a continuous utility function uis : A0 → R, such that the following additively-separable

function represents the ambiguity-free preferences of individual i:

U i (c) =
∑

s∈S

uis (fc (s)) . (1)

We show in the Appendix that the additive separability across states embodied in expression (1)

arises by requiring the preferences to satisfy (along with some other standard properties) the analog

of Savage’s sure-thing principle. However, as is well-known (see for example Karni, 1985), unless

there is some exogenously given structure on the payoffs and their utility, in this formulation, as

far as the “ambiguity-free” preferences represented by U i (.) are concerned, one cannot separate

the probability of the state obtaining from the state-dependent utility. One cannot even determine

the level of state-dependent utility. More precisely, it is the only the change in the state-dependent

utility resulting from a change in the action taken in that state that is determined up to a positive

scalar. From expression (1) it follows that if uis (·) is a state-dependent utility can be used for the

representation in (1) then so can any function ũis (a) = αũ
i
s (a) + βs, with α > 0. But notice that

for any pair of actions a and a′ and any pair of states s and s′, we have:

ũis (a)− ũ
i
s (a

′)

ũis′ (a)− ũ
i
s′ (a

′)
=
uis (a)− u

i
s (a

′)

uis′ (a)− u
i
s′ (a

′)
.

We thus define the following equivalence class for state-dependent utilities.

Definition 1 The state-dependent utility functions (us)s∈S and (ũs)s∈S are cardinally equivalent

if there exists a positive scalar α > 0 and vector of constants (βs)s∈S, s.t. ũs (a) ≡ αus (a) + βs

for all s in S.

In what follows, we shall restrict attention to individuals whose preferences in the absence of

ambiguity admit a state-dependent expected utility representation of the form given in (1). We

shall identify such a preference relation by its state-dependent expected utility representation.
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Definition 2 Let U denote the set of state-dependent expected utility functions defined on the

set of contracts C that take the form given in (1).

3 Introducing Ambiguity

Because we have chosen formally identical state spaces for the players, the test interpretation

of each player and the language of each player are identical. The distinction and the source of

disputes thus arises from the interaction between syntax and semantics. Disputes arise from the

players disagreeing about which tests have been satisfied, or, in a semantic rendition, which state

of nature applies. In this section we first introduce ambiguity by way of ambiguous tests and

show how this makes some contracts ‘ambiguous’. We then develop a model of ambiguity averse

decision-makers.

3.1 Conclusive and ambiguous tests and contracts

In this section we introduce the notion of ambiguous tests. This notion will be based on a primitive

notion of conclusiveness of a test. The idea of conclusiveness of a test t for an individual i with

respect to individual (3− i) is that if she finds herself in a position where she assesses that t is

satisfied, then she is sure that individual (3− i) will assess t as satisfied also. The set of conclusive

tests for individual i will be denoted by T iC . We presume that the individuals are mutually

cognizant of T 1C and T 2C . The test t is unambiguous if it is conclusive for both individuals. The

set of unambiguous tests for individuals 1 and 2 is denoted TU = T
1
C ∩ T

2
C .

2

To ensure that the sets of conclusive tests match our intuition, we assume that T 1C and T 2C

exhibit the following properties.

Properties of Conclusive Tests: For any pair of tests t and t′ in T :

(i) the test t ∨ ¬t is in T iC (that is, all tautologies are conclusive);

(ii) if the test t is in T iC then the test ¬t is in T
(3−i)
C (that is, the negation ¬t is conclusive

for the individual (3− i) with respect to i);

2 In a model with more than two individuals, it would be necessary to use the notation T 1,2
U

, since the set of
unambiguous tests is specific to the given pair (1, 2) . In the two-player model presented here, this is unnecessary
and superscripts are dropped for simplicity.
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(iii) if the tests t and t′ are in T iC , then the test t ∨ t′ is in T iC (that is, T iC is closed under

disjunction);

(iv) if π(t) = π(t′) and the test t is in T iC , then the test t′ is also in T iC (two semantically

equivalent propositions are either both conclusive or neither)

The next proposition shows that these properties guarantee that any test satisfied in every

state or in no state is unambiguous and also that the set of unambiguous tests is closed under

negation and conjunction.

Proposition 1 Fix T 1C and T 2C. If T 1C and T 2C satisfy the properties of conclusive tests then for

each pair of tests t and t′ in T :

(i) if π(t) = S or π (t) = ∅ then t ∈ TU ;

(ii) if t,t′ ∈ TU , then (a) ¬t ∈ TU and (b) t ∧ t′ ∈ TU

Proof. (i) First, let π (t) = S. By property (i), the test t ∨ ¬t is in T iC for i = 1, 2. Since

π (t ∨ ¬t) = S = π (t), it follows by property (iv) and the definition of an unambiguous test that

t ∈ TU . Next, let π (t) = ∅. Then, π (¬t) = S, so as just shown above using properties (i) and

(iv), the test ¬t is in TU . Then, by property (ii), the test ¬¬t is in T iC for i = 1, 2, and so by the

definition of an unambiguous test, the test ¬¬t ∈ TU . Noting that π(t) = π(¬¬t), it follows from

property (iv) that t ∈ TU .

(ii) Let t,t′ ∈ TU . Then, t,t′ ∈ T iC for i = 1, 2. (a) Consider ¬t. By property (ii) and

the definition of an unambiguous test, ¬t ∈ TU ; (b) Consider t ∧ t′. Observe that π(t ∧ t′) =

π(¬(¬t ∨ ¬t′)). By properties (ii) and (iii) and the definition of an unambiguous test, the test

¬(¬t ∨ ¬t′) ∈ TU . Thus applying property (iv), t ∧ t′ ∈ TU .

Given that the two individuals are mutually cognizant of T 1C and T 2C and that they satisfy

the four properties listed above, it follows that for any contract of the form ‘if t then a else a′,’

if t is an unambiguous test then both individuals anticipate that they will agree whether or not

test t has been satisfied. Thus they will agree whether or not the contract calls for action a or

for action a′. Suppose, however, the test is conclusive only for individual i and is not conclusive
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for individual (3− i). Then i anticipates that, when she has assessed test t is satisfied individual

(3− i) will that agree the contract calls for action a. However, individual (3− i) believes when

he has assessed test t is satisfied, there may be a disagreement with i about whether the contract

calls for action a or a′. Conversely, it follows from property (ii) that individual (3− i) anticipates

that when he has assessed test t is not satisfied, individual i will also have assessed that test t is

not satisfied and so will agree that the contract calls for action a′. Individual i, on the other hand,

anticipates that when she has assessed that test t is not satisfied there may be a disagreement

with individual (3− i) about whether the contract calls for action a or a′.

We can use the test interpretation to derive the set of unambiguous events.

Definition 3 The set of unambiguous events EU ⊆ 2S is given by:

EU = {E ⊆ S : π (t) = S for some t ∈ TU} .

The set of ambiguous events EA = 2S − EU .

Lemma 2 The set of unambiguous events EU is an algebra of subsets of S that contains S and

∅. That is, it is closed under taking complements and intersection.

Proof. Assertion (i) of Proposition 1 implies that EU contains S and ∅. Consider any pair

of unambiguous events E and E′ in EU . Since they are unambiguous events, there must exist

tests t and t′ in TU , such that π (t) = E and π (t′) = E′. Assertion (ii) of Proposition 1 states

that TU is closed under negation and conjunction, so the tests ¬t and t ∧ t′ are also in TU . Since

π (¬t) = S −E and π (t ∧ t′) = E ∩E′, the events S −E and E ∩E′ are unambiguous.

For each s ∈ S, and for each individual i, we can derive from the set of unambiguous tests for

individual i, the collection of possible states the other individual ((3− i) may have determined as

having obtained as follows.

Definition 4 (Possibilty of Dispute Set for i) Suppose T iC ⊂ T , is the set of conclusive tests

for individual i. For each s in S, define the possibility-of-dispute for i associated with state s to

be:

Di (s) := {s′ ∈ S : for each t ∈ T iC, s ∈ π (t)⇒ s′ ∈ π (t)}.
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By construction, the set Di (s) comprises those states that cannot be distinguished from s by

a conclusive test for i being satisfied. Clearly, s ∈ Di(s) for each s ∈ S, so Di(s) �= ∅ for each

s ∈ Σ. We will refer to
{
Di (s)

}
s∈S

as the possibility of disputes for i.

For each s ∈ S we can define E(s), the smallest unambiguous event containing s, by

E(s) :=
⋂

E∈{F∈EU :s∈F}

E.

We have the following facts which shows that coarsest common-refinement of
{
D1 (s)

}
s∈S

∪

{
D2 (s)

}
s∈S

is the finest unambiguous partition of S. More specifically, for each state s, the

possibility-of-dispute set for i, Di(s), is a subset of E (s) with equality, if and only if D1 (s) =

D2 (s), and Di(s) is a singleton if and only if the test t(s) associated with the state s is an

conclusive test for i.

Lemma 3 For each s ∈ S: (a) Di(s) ⊆ E(s) and D1(s) = D2 (s)⇒ Di (s) = E(s); (b) Di(s) =

{s} if and only if t(s) ∈ T iC.

Proof. (a) First we show Di(s) ⊆ E(s). Suppose that s′ ∈ Di(s), but s′ /∈ E(s). Observe that

E(s) �= ∅. Hence, there must be some E ∈ {F ∈ EU : s ∈ F}, and s′ /∈ E. Since E ∈ EU , there is

a test t ∈ TU such that π(t) = E. Also, s ∈ E (s). Since s′ ∈ Di(s), it follows from the definition

of Di(s) that s′ ∈ π(t) = E, which is a contradiction. Hence, we conclude that Di(s) ⊆ E(s).

Next we show that E(s) ⊆ Di(s) whenever D1 (s) = D2 (s). Suppose that s′ ∈ E(s), but

s′ /∈ D1(s) = D2 (s). Then there is some test t ∈ TU such that s ∈ π(t) but s′ /∈ π(t). Then π(t)

is an unambiguous event containing s but not containing s′. Hence E(s) ⊆ π(t),and s′ /∈ E(s),

which is again a contradiction. Hence we conclude that E(s) ⊆ Di(s).

(b) (If) Clearly, {s} ⊆ Di(s) from the definition of Di(s). Next, since t(s) ∈ T iC and π(t(s)) =

{s}, it follows that if s′ �= s, then s′ /∈ Di(s), that is, Di(s) ⊆ {s}.

(Only-if) Since Di(s) = {s}, it follows that for each s′ �= s, there is a test t′ ∈ T iU such that

s ∈ π(t′) and s′ /∈ π(t′). Since T iC is closed under conjunction by assertion (ii) of Proposition 1,

we can take the conjunction of these tests over S − {s} to obtain a conclusive test for i, t∗ ∈ T iC

that excludes everything but s, that is, π(t∗) = {s}. Since π(t(s)) = {s} = π(t∗), it follows from

property (iv) of the conclusive test set T iC that t(s) ∈ T iC .
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Notice that if a contract is measurable with respect to the unambiguous partition,
{
Ei (s)

}
s∈S

although the individuals might disagree about the actual state that has obtained, they will never

disagree about which action the contract prescribes. Hence such contracts are viewed as unam-

biguous.

Definition 5 A contract is unambiguous if for all for all s, s′ ∈ S, E (s) = E (s′) ⇒ fc (s) =

fc (s
′). We denote by CU the set of unambiguous contracts.

3.2 Preferences under ambiguity

We now develop a model the effects of ambiguity has on preferences over contracts. Consider an

individual i whose preferences over contracts, in the absence of ambiguity, admit a representation

U i ∈ U . When individual i believes that the state is s, she considers it possible that the other

party may believe any element of Di (s) has obtained. Hence in terms of a given contract c, this

possibility of dispute generates ambiguity about the action that will actually be implemented.

Depending upon which interpretation is followed, the action might conceivably be any member of

the set {fc (s′) : s′ ∈ Di (s)}.

We assume that individuals anticipate that a dispute will lead to a ‘war of attrition’ game in

which each player’s equilibrium payoff is equal to their security, in this case, the outcome associated

with the other player’s interpretation.3 That is, if player i sees state s and (3− i) sees s′ then

player i’s expected payoff in the war-of-attrition equilibrium is min
{
uis (fc (s)) , u

i
s (fc (s

′))
}
. If

the dispute set D (s) contains only two elements, then the player can evaluate the result of a

dispute directly.

More generally, given that disputes are resolved by a war of attrition, individual i can do

no worse than accept the least favorable action implied by the contract in the set of possible

interpretations of the tests by (3− i) at s, that is, in the set {fc (s
′) : s′ ∈ Di (s)}.

Hence, one possible way to model the potential loss from a dispute and the resulting war of

attrition is to assign a decision weight to this worst-case outcome. This reasoning corresponds to

one of the most commonly applied models of ambiguity averse preferences, the ε-contamination

3 We thank Roger Myerson for the suggestion that disputes could be modelled as wars of attrition.
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model.4

If we let εis be the decision-weight she assigns to the ambiguity she faces in state s, then her

ε-contaminated subjective expected utility V is (c) of contract c in state s is given by

(
1− εis

)
uis (fc (s)) + ε

i
s min
s′∈Di(s)

uis (fc (s
′)) . (2)

In what follows, we refer to an increase in εis as a greater aversion of i to ambiguity in state

s. We let V i(c) =
∑

s∈S

V is (c) denote her ex ante expected utility from contract c. A contract c is

ex ante efficient if there is no other contract c′ such that V i(c′) ≥ V i(c) for i = 1, 2, with a strict

inequality for some i.

Depending on the degree of concavity of the state-dependent utility functions uiss compared

to the decision-weights εiss, the ambiguity may lead players to prefer incomplete risk sharing to

possibly ambiguous contracts. This point may be illustrated with reference to the idea of liquidated

damages.

4 Liquidated damages

To be effective, a contract must specify some sanction to be applied if one or other party fails

to perform their obligations. In some cases, this is a relatively simple matter: failure to perform

may be held to nullify the contract. In other cases, however, failure by one party to perform an

obligation may cause damage to the other.

For concreteness, let us consider an example where a supplier contracts with a builder to

deliver materials on a given date. However, under certain conditions (expressed as tests), the

supplier may be unable to deliver, and may default, declaring force majeure. Failure to deliver on

time may force the builder to source the supplies elsewhere at high cost, or to delay the project.

Thus, neither nullifying the contract nor requiring (delayed) performance is an adequate remedy.

The costs of failure will depend on a variety of factors, which may be represented by tests. For

example, rainy weather might halt construction with the result that the supplier’s default causes

no additional cost. In other cases, the default may occur at a crucial point in the project, creating

unusually large damages.

4 The approach here can viewed as a state-dependent extension of Kopylov (2008).
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In the absence of bounds on rationality, the parties could agree on a contract that listed all

possible default states, and specified a payment to be made in each case. The bargaining solution

in this case, derived from the state-dependent preferences of both parties, will be referred to as

the first best. However, with ambiguity arising from bounded rationality, the first best may not

be attainable.

One solution is for the contract to specify that the defaulting party should compensate the

other party to an amount depending on the amount of their loss. In the event of a dispute over

the magnitude of the loss, a court or other external arbiter will determine the payment.

Another possibility is that of liquidated damages, in which the payment for a specific breach

is fixed in the contract, without reference to the actual losses suffered by the injured party. We

will look at the liquidated damages setting and give some results on when liquidated damages

contracts are efficient.

We begin by assuming that the test set T0 includes the test td, interpreted as ‘the state is such

that party 1 must default’ and a set of tests T̂ ⊂ T , that are relevant to the contract in the absence

of default. We assume that td is unambiguous and that the members of the set of tests T̂ ⊂ T ,

are also unambiguous. That is, the only potential disputes relate to the consequences of default,

and not to the question of whether party 1 has in fact defaulted. Without loss of generality we

take td = tK , hence the default event π
(
td
)
= {s ∈ S : rK (s) = 1}.

The action set A = Â×Y is the Cartesian product a set of actions Â relevant to the performance

of the contract and a set of payment actions (monetary transfers) Y = [−M,M ]. The set Â is

assumed to include a default action a0. Actions y ∈ Y are interpreted as ‘party 1 pays y dollars

to party 2. Actions â ∈ Â−{ao} are unavailable or prohibitively costly to party 1 in the event of

default. Thus, any feasible contract c must satisfy

fc (s) = (ac (s) , yc (s)) ∈ Â× Y if rK (s) = 0

fc (s) = (a0, yc (s)) ∈ {a0} × Y if rK (s) = 1

.

That is, the contract specifies a set of actions to be performed, and payments to be made, in

the absence of default and a set of payments to be made in the presence of default. The payment
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yc (s) for any s ∈ π (tK) (that is, a payment made in the presence of default) is referred to as a

damages payment.

We further assume that, for each party i = 1, 2 in each state default state s ∈ π (tK), the

preferences over (â, y) are quasi-linear with respect to the damages payment and so the utility in

each state may be expressed in the form

uis (â, y) = v
i
s

(
wis (â) + (−1)

(2−i)y
)
,

where vis is a state-dependent utility function over wealth, assumed strictly increasing (
(
v1s
)′
> 0)

and strictly concave (
(
v1s
)′′
< 0), and wis (â) is the monetary equivalent value to party i of the

action â performed in state s.

Notice that for any default state s ∈ π (tK), (s−K , 0) = (s1, s2, ..., sK−1, 0) is the state that

would have obtained if party 1 had not defaulted with all the results of all other basic test in T0

unchanged. In this counter-factual state, the contract would have called for action ac (s−K , 0).

Hence, wis (ac (s−K , 0))−w
i
s (a0) may be interpreted as the loss incurred by party i in state s, as

a consequence of the default.

In the absence of ambiguity, a Pareto optimal contract c∗ must satisfy the Borsch condition

for efficient risk-sharing, that is, the marginal rate of substitution between any pair of state-

contingent payoffs must be the same for both individuals. Formally, for any pair of default states

s, s̃ ∈ π (tK) . (
v1s
)′ (
w1s (a0)− yc∗ (s)

)

(v1s̃)
′
(w1s̃ (a0)− yc∗ (s̃))

=

(
v2s
)′ (
w2s (a0) + yc∗ (s)

)

(v2s̃)
′
(w2s̃ (a0) + yc∗ (s̃))

A contract satisfying this condition will be referred to as a first-best contract. Since the

contract is unambiguous in the absence of default, the first-best contract will, in general, be

unambiguous if and only if the set of unambiguous tests is rich enough to distinguish any pair of

states s, s̃ ∈ π (tK) such that either w1s (a0) �= w
1
s̃ (a0) or w

2
s (a0) �= w

2
s̃ (a0) .

Suppose, however, that tests relevant to the effects of default on the welfare of party 1 (the

defaulting party) are ambiguous.

In this case, we may consider the case of a contract with damages dependent on losses to party

13



2. Since the cardinality of π (tK) is finite it follows that the set

L2 =
{
# ∈ [0,M ] : ∃s ∈ π (tK) s.t. # = w2s (ac (s−K , 0))−w

2
s (a0)

}

is also finite. Moreover, for each # ∈ L2, there exists a test t� ∈ T that is satisfied if and

only if default occurs, and the associated loss for party 2 is #, that is, on the event π (t�) =

π (tK)∩
{
s : w2s (ac (s−K , 0))−w

2
s (a0) = #

}
. The members of the set of events

{
π (t�) : # ∈ L

2
}
∪

{π (¬tK)}, are mutually exclusive and exhaustive, and therefore constitute a partition of the state

space. Any contract c can be amended in a way to make it is a loss-dependent damages contract ĉ,

by restricting it to be measurable with respect to this partition. That is, ĉ may then be specified

as

fĉ (s) =






fc (s) s ∈ π (¬tK)

yĉ (#) s ∈ π (t�)

where yĉ : R+ → [0,M ] is a function relating the loss borne by party 2 to the associated damages

payment from party 1. Note that we do not require yĉ (#) = #. That is, the damages payment

from party 1 to party 2 need not be equal to the loss incurred by party 2. Depending on the risk-

sharing properties of the contract and on the state-dependent preferences of party 1, the damages

payment to party 2, yĉ (#), may be less than, equal to or greater than the loss # incurred by party

2.5

The tests t� may still be ambiguous. For example, the parties may disagree over what items

should be counted as losses arising from default and how they should be valued. Thus, such

contracts are likely to, and regularly do, produce disputes.

If losses are ambiguous, and dispute costs are high, parties may prefer a liquidated damages

contract, with a specified payment ȳ. The required test set is then the minimal set {tK} and the

contract simply requires

5 In general, risk-sharing would imply that the damages payment should be less than the loss. In the model
presented here, losses are the result of force majeure rather than discretionary options. Hence, there is no incentive-
based reason for exemplary or punitive damages. However, consideration of the state-contingent preferences of party
1 suggests instances where risk-sharing may imply a payment larger than the loss. Suppose that high-losses to party
2 occur when the good is in high demand and subject to constrained supply. Then party 1, having defaulted as
a result of inability to supply on time may be able to sell the good at a high price and therefore (involuntarily)
benefit from default.
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if ¬tK then c else (a0, ȳ)

Hence,

fc̄ (s) =






fc (s) s ∈ π (¬tK)

(a0, ȳ) s ∈ π (tK)

That is, either the contract applicable in the absence of default is implemented or the default

action a0 is undertaken and party 1 pays to party 2 the liquidated damage sum ȳ. As long as the

test tK is unambiguous, so is the liquidated damages contract.

In general, there will be gains from risk sharing across states. When the aversion to ambiguity

is small across states, efficient contracts will involve risk sharing even at the ambiguous default

states. However, when the aversion to ambiguity is sufficiently large, there will be no risk sharing

across default states, i.e., all efficient contracts will be liquidated damages contracts. We formally

give this result in the next proposition. For simplicity, we presume that the possibility of dispute

set Di(s) is the same for each default state s ∈ π(tK).

Proposition 4 Suppose that for i = 1, 2 and all s ∈ π(tK), D
i(s) = π(tK). There is an ε < 1

such that: if εis > ε for all i ∈ {1, 2} and s ∈ π(tK), then every ex ante efficient contract is a

liquidated damages contract.

Proof. Suppose a contract c is not a liquidated damages contract. Then, let y denote the

maximal payment over default states under this contract, i.e., y = max
s∈π(tK)

yc(s), and let y denote

the minimal payment over default states, i.e., y = min
s∈π(tK)

yc(s). Then, y > y. We will show that

provided ε is large enough, we can increase the welfare of both parties 1 and 2 by marginally

increasing y and marginally decreasing y.

For, this, we define:

a = max
i∈{1,2}

max
s∈π(tK)

(vis)
′(wis (a0)−M);

b = max
i∈{1,2}

max
s∈π(tk)

(vis)
′(wis (a0) +M);

ε =
x

x+ y
.
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We presume in what follows that: εis > ε for all i ∈ {1, 2} and s ∈ π(tK). Let S = {s ∈ π(tK) :

y = yc(s)}, S = {s ∈ π(tK) : y = yc(s)}, and S
∗ = π(tK) − (S ∪ S). Then the ex ante expect

utility of 1 can be written as:

V 1(c) =
∑

s∈S−π(tK)

V 1s (c) +
∑

s∈S

[
(1− ε1s)v

1
s(w

1
s(a0)− y)

]
+
∑

s∈S∗

[
(1− ε1s)v

1
s(w

1
s(a0)− yc(s))

]

+
∑

s∈S

[
(1− ε1s)v

1
s(w

1
s(a0)− y)

]
+

∑

s∈π(tK)

[
ε1sv

1
s(w

1
s(a0)− y)

]
.

We consider a marginal change to y and y such that dy = −dy. For such a change:

dV 1(c) = −
∑

s∈S

[
(1− ε1s)(v

1
s)
′(w1s(a0)− y)dy

]
+
∑

s∈S

[
(1− ε1s)(v

1
s)
′(w1s(a0)− y)dy

]

+
∑

s∈π(tK)

[
ε1s(v

1
s)
′(w1s(a0)− y)dy

]
.

We let |A| denote the cardinality of a set A. By our choices of a, b and ε, and the facts that

(v1s)
′ > 0, and (v1s)

′′ < 0, we find that:

dV 1(c) > [−|S| (1− ε)x+ |π(tk)| εy] dy > |π(tk)| [−(1− ε)x+ εy] dy = 0.

By similar reasoning for 2, we obtain dV 2(c) > 0. Hence, c cannot be ex ante efficient.

Here we see that in the case of sufficient aversion to ambiguity over default states, the optimal

contract is the liquidated damages contract. The intuition in the maximally pessimistic case is as

follows. Since each expects the worst in default states, we can raise the utility of 2 at all default

states by raising y, and simultaneously raise the utility of 1 at all default states by lowering y.

Since this change does not affect utility in any other state, it generates a Pareto improvement.

Proposition 4 shows that intuition carries through provided the parties are sufficiently ambiguity

averse.

The optimality of the liquidated damages contract is consistent with situations where the

parties expect default to result in ex post litigation costs that burn up all surplus. By signing a

liquidated damages contract, each party commits ex ante to abstain from such behavior.

A natural question is whether or not the efficiency of liquidated damages contracts can be

maintained in a state space approach. The answer is that it cannot. To see this, we presume

that each player will have a partition over S × S and a probability distribution over those states.
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Let ρi(s, t) denote the prior probability in i′s mind that 1 sees s and 2 sees t. We focus on the

event of default which is Ed = {(s, t) : s, t ∈ π(tK)}. Then, the probability of a default event in

the eyes of i is
∑

(s,t)∈Ed

ρi(s, t). In keeping with our previous analysis, each person’s utility and

wealth depends only on the state they see so when the state is (s, t) we will write v1s , w
1
s , v

2
t , w

2
t .

However, we allow the transfer amount y to depend on the state (s, t). The presumption here is

that some determination on (s, t) will be made ex post and then a transfer occurs. Each player

considers each contingency (s, t) as possible when he writes the contract. Under this scenario, the

ex ante expected utility of 1 and 2 restricted to default states are respectively:

∑

(s,t)∈Ed

ρ1(s, t)v
1
s(w

1
s(a0)− y(s, t))

and:
∑

(s,t)∈Ed

ρ2(s, t)v
1
t (w

2
t (a0) + y(s, t))

Though typically liquidated damages will not be efficient in this full state-space approach, for

a clean result we focus on a case of a common utility function and common prior with a technical

assumption about richness of the state-space:

1. (Common prior) ρ1(s, t) = ρ2(s, t) for all (s, t) ∈ Ed;

2. (Common state independent utility function) v1s = v
2
s = v for all s ∈ S.

3. (Richness of State-space) There are s, s′ in π(tK) such that either w1s(a0) �= w
1
t (a0) or w

2
s(a0) �=

w2t (a0).

Proposition 5 Suppose that 1-3 hold. If c is ex ante efficient, then c is not a liquidated damages

contract.

Proof. Suppose c is a liquidated damages contract. By assumption 3, there are two default

states s and s′ where some player gets a different utility prior to any transfer. We presume,

without loss of generality that w1s(a0) �= w1s′(a0). Consider the states (s, s) and (s
′, s) which are

both in Ed. By assumptions 1 and 2, a necessary condition for efficiency is:

v′
(
w1s (a0)− yc (s, s)

)

v′ (w1s′ (a0)− yc(s
′, s))

=
v′
(
w2s (a0) + yc (s, s)

)

v′ (w2s (a0) + yc(s
′, s))
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Since the contract is a liquidated damages contract, yc (s, s) = yc(s′, s), and so the right hand

side of the equality must be 1. However, since w1s(a0) �= w1s′(a0) and v
′′ < 0 (strict concavity),

the left hand side cannot equal 1 when yc (s, s) = yc(s
′, s). Since c does not satisfy the necessary

condition for efficiency, c is not efficient.

5 Concluding comments

We have provided a formal model for incorporating linguistic ambiguity into decision making. The

ambiguity in our model arises from the bounded rationality of the players which is expressed as

limited abilities to perform tests over the possible contingencies. As a result, players have limited

descriptions of the possible states of the world available to them. Even when they use the same

language, their interpretations may differ.

Contracting is modelled using a multi-player version of the test-based contingent plans de-

scribed in Blume et al. (2006). In this context, ambiguity can affect incentives for risk sharing,

and the desirability of contracts. In particular, ambiguity may in some cases be handled effectively

and efficiently by liquidated damages contracts.

The representation of ambiguity proposed here suggests new approaches to a range of issues in

contract theory, and potentially broader applications in agency theory. The standard principal-

agent problem is one where contracting is limited to some observable unambiguous characteristics

like output, rather than a full set of characteristics including effort levels which may be ambiguous.

The framework developed here suggests the possibility of an endogenous choice between contracts

over different characteristics, where the choice of the contractual variables chosen depends on the

level of ambiguity and potential gains from risk sharing. While this application would require

overcoming some new technical details involving the appropriate treatment of tests, the benefit

would be the development of a theory of contracting in which the terms of the contract, over which

the parties actually bargain, plays the central role.
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A Axiomatization of state-dependent additively-separable
ambiguity-free preferences.

Let �i denote individual i’s (dispute-free) preferences over contracts. Consider the following three

axioms.
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Ordering Axiom The relation �i is complete and transitive.

Act-equivalence Axiom For any pair of contracts, c and c′ in C, if fc = fc′ then c ∼ c′.

Sure-thing Principle: For any four contracts c, c′, c′′ and c′′′ in C, and any test t in T ,

if t then c else c′′ �i if t then c′ else c′′

⇒ if t then c else c′′′ �i if t then c′ else c′′′.

The first axiom is the standard ordering axiom. The second requires any two contracts that

induce the same act over actions must come from the same indifference class. This seems natural

in a setting in which we assume the agent understands the language in which contracts are written

and the logical implications of its terms and attendant requirements. The third axiom is the analog

of Savage’s sure-thing principle.

The fourth axiom is a continuity assumption to ensure a numerical representation of preferences

exists. Before stating it, we need to define what it means for a sequence of contracts to converge

to a limit. We do this inductively. First, we define the notion of convergence for constant acts

directly from the notion of convergence of actions in the set A0, and then we extend it inductively

to all contracts via the ‘if..then..else’ construction.

Definition 6 (Convergence of Sequences of Contracts) The (countably infinite) sequence

of constant acts 〈an〉 converges to the constant act ā, if the corresponding sequence of actions

converge to the corresponding action, that is, limn→∞ an = ā. For any sequence of tests 〈tn〉 and

any pair of sequences of contracts 〈cn〉 and 〈c′n〉, the sequence of contracts 〈c′′n〉, where c′′n = ‘if tn

then cn else c
′
n’ is said to converge to c̄′′ = if t̄ then c̄ else c̄′, if 〈cn〉 and 〈c′n〉 converge to c̄

and c̄′, respectively, and there exists finite m, such that tn = t̄ for all n > m.

Continuity of preference can now be expressed in the standard manner of requiring that there

are no ‘jumps in preference at infinity’.

Continuity: For any pair of sequences of contracts 〈cn〉 and 〈c
′
n〉, that converge to c̄ and c̄′,

respectively, if cn �
i c′n for all n, then c̄ �i c̄′
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Finally, we require a minimum amount of non-degeneracy for the preferences with respect to

the states in S. Formally, we require at least three states to be ‘essential’.

Definition 7 Fix �i. A state s in S is essential for �i if there exists a pair of actions a and a′

in A0 and a contract c in C, such that

[if t (s) then a else c] �i [if t (s) then a′ else c] .

We now have all the pieces for the representation result.

Theorem 6 (State-Dependent Expected Utility Representation) Fix �i. If there are at

least three essential states then the following are equivalent.

1. The relation �i satisfies ordering, act-equivalence, sure-thing principle and continuity.

2. There exists for each state s in S a continuous utility function uis : A0 → R, such that the

following additively-separable function represents �i:

U i (c) =
∑

s∈S

uis (fc (s)) (3)

Moreover, the functions uis (·) are unique up to multiplication by a common positive scalar

α > 0, and the addition of a state-dependent constant βs.

Proof. Sufficiency of axioms. Consider the preference relation �i
�
⊂ A

|S|
0 × A

|S|
0 over acts,

induced by �i: c �i c′ implies fc �� fc′ . Consider a pair of acts, f �i
�
f ′. By construction, there

exists a pair of contracts c and c′ such that fc = f , fc′ = f ′ and c �i c′. Now for any pair of

contracts ĉ and ĉ′, such that fĉ = f and fĉ′ = f ′, it follows from act-equivalence that ĉ ∼ c and

ĉ′ ∼ c′, and so by ordering we have ĉ �i ĉ′. Hence it is enough to obtain a representation Û i (f)

of �i
�
, since we can then set U i (c) := Û i (fc).

It is straightforward to show that continuity of �i implies that �i
�
is continuous in the product

topology of A
|S|
0 ; and that the sure-thing principle for �i implies that �i

�
satisfies the sure-thing

principle for acts: that is, for any four acts f , f ′ f ′′ and f ′′′, and any event E ⊂ S, if f (s) = f ′′ (s)

and f ′ (s) = f ′′′ (s) for all s ∈ E, and f (s) = f ′ (s) and f ′′ (s) = f ′′′ (s) for all s /∈ E then

f �i
�
f ′ implies f ′′ �i

�
f ′′′. Hence by Debreu (1960, Theorem 3) it follows there exists an additive

representation for �i
�
as given in (3). Proof of necessity of axioms is omitted.
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