
 
R

es
ea

rc
h 

su
pp

or
te

d 
by

 a
n 

A
us

tra
lia

n 
R

es
ea

rc
h 

C
ou

nc
il 

Fe
de

ra
tio

n 
Fe

llo
w

sh
ip

 
ht

tp
://

w
w

w
.a

rc
.g

ov
.a

u/
gr

an
t_

pr
og

ra
m

s/
di

sc
ov

er
y_

fe
de

ra
tio

n.
ht

m
 

 
 

The Computation of Perfect and Proper 
Equilibrium for Finite Games via Simulated 

Annealing 
By 

 

Stuart McDonald 
 

and 
 

Liam Wagner 
 
 
 
 

 
Risk & Sustainable Management Group 

 

Schools of Economics and Political Science 
University of Queensland 

Brisbane, 4072 
rsmg@uq.edu.au 

http://www.uq.edu.au/economics/rsmg 

 

Risk and Uncertainty Working Paper: R10#1 



The Computation of Perfect and Proper Equilibrium for

Finite Games via Simulated Annealing

Stuart McDonald and Liam Wagner
The School of Economics

The University of Queensland

Brisbane QLD 4072 Australia

April 21, 2010

This paper exploits an analogy between the “trembles” that underlie the functioning of
simulated annealing and the player “trembles” that underlie the Nash refinements known
as perfect and proper equilibrium. This paper shows that this relationship can be used to
provide a method for computing perfect and proper equilibria of n-player strategic games.
This paper also shows, by example, that simulated annealing can be used to locate a perfect
equilibrium in an extensive form game.

1 Introduction

This paper exploits an analogy between the “trembles” that underlie the functioning of
simulated annealing and the player “trembles” that underlie the Nash refinements known
as perfect and proper equilibrium. This paper shows that this relationship can be used to
provide a method for computing perfect and proper equilibria of n-player strategic games.
This paper also shows, by example, that simulated annealing can be used to locate a perfect
equilibrium in an extensive form game. The approach that is used in this paper is to let
the agent’s set of pure strategies become the nodes of a fully connected undirected graph.
Movement from a candidate pure strategy to an alternative is then governed by the Markov
chain that is generated by the algorithm. The mixed strategy equilibrium is then given by
the stationary distribution of this Markov chain, with the players’ pure strategy space acting
as the state space. The main contribution of this paper is to provide a proof demonstrating
that the algorithm not only computes a Nash equilibrium for n-player finite strategy strategic
games, but will locate the perfect and proper Nash equilibrium in these games should one
exist. This paper also demonstrate, using the example of the three player game “Selten’s
Horse”, that the algorithm can also be used to compute the perfect equilibrium for an
extensive form game.
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As such this paper represents a significant departure from approach generally followed
in the literature on computation of Nash equilibria in non-cooperative game theory. Most
of the existing algorithms for computing Nash equilibria utilize the underlying geometric
properties of non-cooperative games to compute the Nash equilibria. For example Lemke
and Howson’s [16] solution method for bimatrix games, generalized to n-person games by
Rosenmüller [22] and Wilson [33], exploits the idea that many games can be expressed in
the form of a linear complementarity problem (LCP). The algorithm then literally traces a
path through the set of all feasible solutions for the LCP, to identify those solutions that
are complementary and these will then coincide with the Nash equilibria for the game in
question. Another example is the Scarf algorithm [23], which computes Nash equilibria as
fixed points of convex sets by subdividing the product space of agents’ strategies and then
identifying the equilibrium by method of triangulation. Much of the later research, such
as the papers by van der Laan and Talman [28, 29, 30] and Doup and Talman [4, 5] have
concentrated on making improvements on these Scarf algorithm.

In terms of algorithms that can be used specifically for computing “trembling hand” per-
fect Nash equilibria, the most well known are the linear and logarithmic tracing procedures
developed by Harsanyi [8] and Harsanyi and Selten [9]. Both tracing procedures work simi-
larly in that an equilibrium in a game is found by “tracing” a feasible path through a family
of auxiliary games. The solution’s progress along the feasible path is intended to represent
the way in which players adjust their expectations and predictions about the play of the
game. The tracing procedure is different from the algorithms discussed above, because it
sets out to compute and identify a refinement of Nash equilibria; “trembling hand” perfec-
tion [24, 25]. The algorithms discussed in the previous paragraphs will compute an arbitrary
equilibrium point, with no indication of whether or not the equilibrium chosen is stable, or
if the strategies chosen by game players are qualitatively rational.

One of the limitations of the tracing procedure is that logarithmic tracing procedures
do not always trace a path to a perfect equilibrium. Harsanyi [8, p.69] has argued that
this problem can be resolved by eliminating all dominated pure strategies before applying
the tracing procedure. However, van Damme [3, p.77] points out that examples can be
constructed without dominated pure strategies in which the tracing procedure yields a non-
perfect equilibria. He has suggested that the problem lies in the logarithmic tracing procedure
as it involves approximating a normal form game with games with logarithmic control costs.
Games with control costs are normal form games in which players, in addition to choosing
strategies, incur costs depending on how well they choose to control their actions. To address
these problems, van den Elsen and Talman [26, 27] have constructed a homotopy approach,
described as a “complementary pivoting” algorithm. This algorithm then traces a piecewise
linear path from a given starting vector to an equilibrium.

Work by Koller and Megiddo [14] and Koller, Megiddo and von Stengel [15], have ex-
tended this approach to computing Nash equilibria of extensive game forms, with von Stengel,
van den Elzen and Talman [32] devising an algorithm that will find the perfect equilibrium
in extensive game forms. So far this procedure has only been applied to two player extensive
game forms. It should be noted that these papers computes the Nash equilibrium of ex-
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tensive form games by “collapsing” the game down into its equivalent strategic form game.
By contrast, the approach adopted in this paper leads to equilibrium strategy selection by
a pruning of the game tree of the extensive game so that the correct path is found. The
reason why our algorithm avoids this problem is that it avoids applying simulated annealing
directly to the unit simplex of players’ mixed strategy profiles, which is the path employed
all algorithms using “geometric approaches. The problem with applying the direct approach
to extensive game forms is that there is no immediate equivalent notion of a mixed strategy.
However, the approach proposed in this paper the perfect equilibrium is then given by the
stationary distribution of the Markov chain.

The structure of this paper is given as follows. The second section provides formal
definitions of perfection and properness in finite strategy strategic games. The third section
of this paper will provide a characterization of these algorithms in terms of the trembling hand
of trembling hand perfection, introducing their application to the computation of perfect and
proper equilibria of strategic game forms. This section shows how simulated annealing can
be used to provide a sequence of perturbed mixed strategies that will eventually converge
on perfect and proper equilibiria, should they exist. The basic idea is to select a Markov
chain and then use this to deliver a Nash equilibrium via simulated annealing. To do this
we must show that it is possible to select a Markov chain that is best suited to deliver
convergence for the sequence of completely mixed Nash equilibria of perturbed games to a
perfect and proper equilibrium. This is the objective that is undertaken in this section. The
fourth section provides an example of the use of simulated annealing for computing the Nash
equilibrium of a finite game. We use “Selten’s horse”, a three-person extensive game which
is known to have a unique perfect equilibrium, as well as another “non-rational” sub-game
perfect Nash equilibrium.

2 Perfection and Properness in Strategic Games

Consider an n-person game in strategic form G =
(

N, (Si)i∈N , (ui)i∈N

)

in which N =
{1, ..., n} is the player set, each player i has a finite set of pure strategies Si = {si1, ..., siki

}
and a payoff function ui : ×n

i=1Si → R mapping the set of pure strategy profiles ×n
i=1Si

into the real number line. In the strategic game G, for each player i ∈ N there is a set
of probability measures ∆i that can be defined over the pure strategy set Si, this is player
i’s mixed strategy set. The elements of the set ∆i are of the form pi : Si → [0, 1] where
∑ki

j=1 pij = 1, with pij = p (sij) , i.e. ∆i is isomorphic to the unit simplex.
The elements of the space of mixed strategy profiles ×n

i=1∆i are denoted by p = (p1, ..., pn) ,

where pi = (pi1, ..., piki
) ∈ ∆i. As is the convention, the following short-hand notation is used

for the mixed strategy profile p = (pi, p−i), where p−i denotes the other components of p. For
each player i, the payoff function ui : ×n

i=1Si → R can be extended to the domain of mixed
strategy profiles ×n

i=1∆i. The payoff function for each player i will be defined as follows

ui (pi, p−i) =

ki
∑

j=1

pijui (sij , p−i) . (2.1)
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A mixed strategy p ∈ ×n
i=1∆i is Nash equilibrium of the strategic game G, if for all players

i ∈ N and all p′i ∈ ∆i

ui (pi, p−i) ≥ ui (p
′
i, p−i) . (2.2)

Suppose that as well as there being a positive probability pij of a player i selecting a
pure strategy sij ∈ Si, there is a small probability εij that player will mistakenly employ
the jth pure strategy sij . Given that player i selects his jth pure strategy sij by mistake,
the probability of doing so is given by p̃ij . The total probability of player i selecting a pure
strategy sij ∈ Si is then given by

p̂ij = (1 − εij) pij + εij p̃ij. (2.3)

It can be seen that in this case, the total probability of player i selecting a pure strategy
sij ∈ Si will be bounded below by

p̂ij ≥ εij p̃ij. (2.4)

Equating ηij = εijqij we can see that this condition can be rewritten as

p̂ij ≥ ηij ∀ sij ∈ Si and i ∈ N, (2.5)

with
ki
∑

j=1

ηij < 1 ∀ i ∈ N. (2.6)

This leads to the definition of a perturbed game (G, η) as a finite strategic game derived
from the strategic game G, in which each player i’s mixed strategy set is the set of completely
mixed strategies for player i constrained by the probability of making an error

∆i (ηi) =
{

pi = (pi1, ...., piki
) ∈ ∆i; pij ≥ ηij and

∑ki

j=1
ηij < 1

}

. (2.7)

A mixed strategy combination p ∈ ×n
i=1∆i (ηi) is a Nash equilibrium of the perturbed game

(G, η) if and only if the following condition is satisfied

ui (sij, p−i) < ui (sil, p−i) then pij = ηij , ∀ sij , sil ∈ Sj. (2.8)

This implies that a mixed strategy profile p is a Nash equilibrium of the perturbed game
(G, η) if and only if no single player has the incentive to deviate from his current strategy
to a different strategy among the set of constrained strategies defined by (2.7).

A mixed strategy profile p ∈ ×n
i=1∆i is a perfect equilibrium in the strategic game G if

there exists a sequence of completely mixed strategy profiles
{

pk
}∞

k=1
where limk→∞ pk = p,

and for every player i ∈ N and for every p′i ∈ ∆i

ui

(

pi, p
k
−i

)

≥ ui

(

p′i, p
k
−i

)

∀ k = 1, 2, .... (2.9)

In terms of our definition of a perturbed game, a mixed strategy is a perfect equilibrium if
and only if there exists some sequences

{

ηk =
(

ηk
1 , ...η

k
n

)}∞

k=1
and

{

pk =
(

pk
1, ...p

k
n

)}∞

k=1
such

that
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1. each ηk > 0 and limk→∞ ηk = 0,

2. each pk is a Nash equilibrium of a perturbed game equilibrium
(

G, ηk
)

, and

3. limk→∞ pk = p where for every player i ∈ N and for every p′i ∈ ∆i

ui

(

pi, p
k
−i

)

≥ ui

(

p′i, p
k
−i

)

∀ k = 1, 2, .... (2.10)

An alternative definition of perfection was made by Myerson [20, pp 75–76] and is based
on the idea that every pure strategy in a player’s set of pure strategies has associated with it
a small positive probability of at least ε > 0. However, on strategies that are best responses
the associated probabilities greater than ε. More formally, for any player i ∈ N a mixed
strategy pi ∈ ∆i is an ε-perfect equilibrium if and only if it is completely mixed and there
exists some sequences

{

εk
}∞

k=1

if ui (sij , p−i) < ui (sil, p−i) then pij ≤ εk, ∀ sij , sil ∈ Sj . (2.11)

Unlike Nash equilibria of perturbed games, the ε-perfect equilibria of a game G will not
necessarily be one of its Nash equilibria. However, Myerson does show that p = (p1, ..., pn) ∈
×n

i=1∆i will be a perfect equilibrium if and only if

1. each εk > 0 and limk→∞ εk = 0,

2. each pk is an εk-perfect equilibrium of the game G, and

3. limk→∞ pk
i = pi for every player i ∈ N.

This definition by Myerson is important, not only as an alternative route to perfection,
but also as a means of further constraining the rationality requirements of this refinement
by weighting more heavily the best responses from the set of player strategies. This leads to
the definition of a proper equilibrium [20, pp 77–78]. Myerson begins by defining an ε-proper

equilibrium for a game G as any completely mixed strategy p = (p1, ..., pn) ∈ ×n
i=1∆i such

that for some sequence
{

εk
}∞

k=1
,

if ui (sij, p−i) < ui (sil, p−i) then pij ≤ εkpil, ∀ sij, sil ∈ Sj. (2.12)

A completely mixed strategy p = (p1, ..., pn) ∈ ×n
i=1∆i is then said to be a proper equilibrium

of a game G if and only if

1. each εk > 0 and limk→∞ εk = 0,

2. each pk is an εk-proper equilibrium of the game G, and

3. limk→∞ pk
i = pi for every player i ∈ N.

Based on Myerson’s definition of perfection, it can be seen that for any game, all proper
equilibria must be contained inside the set of perfect equilibria.
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3 Computing Perfect and Proper Equilibria in Strate-

gic Games

Simulated annealing (Černy [2], Kirkpatrick et al. [11]) uses random perturbations in order to
create opportunities for the algorithm to escape from the local minima trap. More formally,
let E be a finite set and C : E → R be the cost function to be minimized such that there
exists an i0 ∈ E where

C (i0) ≤ C (i) , ∀ i ∈ E. (3.1)

The algorithm works by defining a neighborhood structure on the E,

N = {N (i) ; i ∈ E} . (3.2)

This neighborhood structure is a fully connected graph on the elements of E with no self-
loops, in which the nodes directly connected to i constitute the set

N (i) = {j ∈ E; j 6= i} . (3.3)

There is a family of proposal distributions Q = {qij}, which is defined over all states contained
in E has its support defined on N (i) , that gives the probability of proposing a transition
from to state j from state i. There is also a control parameter T , such that for all values of
T and all states i and j ∈ E, there is a probability of acceptance

αij (T ) = min
{

1, e−(C(j)−C(i))/T
}

. (3.4)

When this type of acceptance rule is employed, then this algorithm is equivalent to the
Metropolis-Hastings Algorithm. The transition probability of shifting between states is then
given by

pij = αij (T ) qij (3.5)

for the off-diagonal terms of the transition probability matrix.
Note that when the matrix of proposal probabilities Q is symmetric, then the stationary

distribution is given by

πi (T ) =
e−C(i)/T

∑

k∈E e−C(k)/T
(3.6)

If the set of global minima is defined by

H = {i ∈ E; C (i) ≤ C (j) ∀ j ∈ E} , (3.7)

then πi (T ) is maximal on this set. Furthermore, as T → 0

πi (T ) =

{ 1
|H|

if i ∈ H

0 otherwise;
(3.8)

i.e. as T → 0, either e−(C(i)−m)/T → 0 if C (i) > m or to 1 if C (i) = m, where m is the
global minimum.
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The starting basis for this algorithm for calculating perfection will be to follow Myerson
[20] by constructing a sequence of ε-perfect equilibria for the strategic game G. As stated
above, we know that for the strategic game G, p ∈ ×n

i=1∆i is an ε-perfect equilibrium if and
only if for each player i ∈ N , pi ∈ ∆i is a completely mixed strategy and

ui (sij, p−i) < ui (sil, p−i) then pij ≤ ε, ∀ sij , sil ∈ Sj . (3.9)

Following Myerson [20, p 79],, the set of mixed strategies is defined for each player i as
follows:

∆∗
i = {pi ∈ ∆i; pij ≥ δ ∀ sij ∈ Si} , (3.10)

where

δ =
1

m
εm, 0 < ε < 1 (3.11)

with m = maxi∈N |Si|. For each player i the family of completely mixed ε-perfect equilibrium
strategies contained in ∆∗

i is define in terms of the following correspondence

Fi (p1, ..., pn) = {p∗i ∈ ∆∗
i ; ui (sij, p−i) < ui (sil, p−i) then pij ≤ ε, ∀ sij, sil ∈ Sj} . (3.12)

If for each player i ∈ N , a mixed strategy is defined by

p∗ij =
e|Nij |

∑ki

l=1 e|Nil|
, (3.13)

where
|Nij | = |{sil ∈ Si; ui (sij , p−i) < ui (sil, p−i) and p ∈ ×n

i=1∆
∗
i }| , (3.14)

then it can be seen that p∗i ∈ Fi (p1, ..., pn) will be non-empty. As each Fi (p1, ..., pn) will
a finite collection of linear inequalities, they will also be closed convex sets. In addition,
each Fi (p1, ..., pn), by the continuity of the payoff function ui (sij, ·) , will also be upper semi-
continuous. As a consequence the mapping F : ×n

i=1∆
∗
i → ×n

i=1∆
∗
i satisfies all the conditions

of the Kakutani Fixed Point Theorem. In other words, there exists some completely mixed
strategy pε ∈ ×n

i=1∆
∗
i such that pε is an ε-perfect equilibrium of G. As ×n

i=1∆i is compact,
the sequence ε-perfect equilibria pε → p as ε → 0, where p is the perfect equilibrium of G.

An alternative route to the same result can be arrived at by using an argument based on
the convergence properties of Markov chains.

Theorem 3.1. For any normal form game G =
(

N, (Si)i∈N , (ui)i∈N

)

, it is possible to define

a MCMC algorithm such that its transition probabilities will converge to a perfect equilibrium

as long as the following conditions hold:

1. if ui

(

sij , p
k
−i

)

− ui

(

sil, p
k
−i

)

≥ 0 then accept, where pk
−i is the tuple mixed strategies

selected on the kth iteration;

2. otherwise, accept if exp

(

ui(sil,p
k
−i)−ui(sil,p

k
−i)

T

)

> ε, where ε ∼ U [0, 1] ; and
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3. in addition it can be seen that for all sij and sil ∈ Si such that ui

(

sij, p
k
−i

)

< ui

(

sil, p
k
−i

)

,

αi
jl (T ) → 0 as T → 0.

Proof. For each player i ∈ N , there will be a collection these subsets

Nij = {sil ∈ Si; ui (sij , p−i) < ui (sil, p−i) and p ∈ ×n
i=1∆

∗
i } (3.15)

of i’s pure strategy space Si. The collection of these sets will referred to as player i’s local
neighborhood structure. What we would like to do is for any two pure strategies sij, sil ∈ Si

define a path from sij to sil such that

sij1 ∈ Nij, sij2 ∈ Nij1, ..., sil ∈ Nijm
. (3.16)

In order to do this, we observe that the point-set mapping defined by the set

Fi (p1, ..., pn) = {p∗i ∈ ∆∗
i ; ui (sij , p−i) < ui (sil, p−i) then pij ≤ ε, ∀ sij, sil ∈ Si} . (3.17)

is a collection of homogenous transition probabilities Si

pi
jl (k) = Pr {si (k) = sil|si (k − 1) = sij} = Pr {sil|sij} . (3.18)

Furthermore we can see that these transition probabilities have the Markov property, i.e.
given the path from sij to sil such that

sij1 ∈ Nij, sij2 ∈ Nij1, ..., sil ∈ Nijm
. (3.19)

the conditional probability

Pr {silsij1 , sij2, ...sijm
, sij} = Pr {sil|sijm

}Pr
{

sijm
|sijm−1

}

... Pr {sij2 |sij1} . (3.20)

We define the following generating probability for the Markov chain for each player i ∈ N

gi
jl =

{ 1
|Nij |

, if sil ∈ Nij

0, otherwise,
(3.21)

where
|Nij | = |{sil ∈ Si; ui (sij , p−i) < ui (sil, p−i) and p ∈ ×n

i=1∆
∗
i }| . (3.22)

We now introduce the following acceptance probability

αi (T ) = min

{

1, exp

(

ui

(

sij , p
k−1
−i

)

− ui

(

sil, p
k−1
−i

)

T

)}

, (3.23)

where T > 0 is a control parameter. This last condition implies that

1. if ui

(

sij , p
k
−i

)

− ui

(

sil, p
k
−i

)

≥ 0 then accept, where pk
−i is the tuple mixed strategies

selected on the kth iteration;
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2. otherwise, accept if exp

(

ui(sij ,pk
−i)−ui(sil,p

k
−i)

T

)

> ε, where ε ∼ U [0, 1] ; and

3. in addition it can be seen that for all sij and sil ∈ Si such that ui

(

sij , p
k
−i

)

<

ui

(

sil, p
k
−i

)

, αi
jl (T ) → 0 as T → 0.

Given theses three conditions we can now see that the following will hold:

• We know that under this acceptance criterion as k → ∞ The transition probability
matrix pk

i of the homogenous Markov chain generated by the game G will converge on
a stationary distribution π (T ) as k → ∞.

pk
i → πi (T ) =

e(ui(sij ,pk
−i)−ui(sil,p

k
−i))/T

∑ki

l=1 e(ui(sij ,pk
−i)−ui(sil,p

k
−i))/T

, (3.24)

where C (i) and as T → ∞

πi (T ) =

{ 1
|Nij |

if i ∈ H

0 otherwise
(3.25)

where
Nij = {sil ∈ Si; ui (sij, p−i) < ui (sil, p−i) , pi = 0} . (3.26)

(See van Laarhoven and Aarts [31, p.22–25] for the proof of this last statement.)

• The transition probability matrix pk
i satisfies Myerson’s definition of an ε-perfect equi-

libria and as Myerson has shown, the fixed point that this sequence converges on is
also a perfect equilibrium.

As a slight extension to this algorithm, we show that by changing the acceptance criteria
a proper equilibrium can now be computed. Following Myerson [20, p.78], the following
criteria is used to determine properness. Myerson begins by defining an ε-proper equilibrium

for a game G to any completely mixed strategy p = (p1, ..., pn) ∈ ×n
i=1∆i such that

if ui (sij, p−i) < ui (sil, p−i) then pij ≤ εpil, ∀ sij, sil ∈ Sj . (3.27)

A completely mixed strategy p = (p1, ..., pn) ∈ ×n
i=1∆i is then said to be a proper equilibrium

of a game G if and only if

1. each εk > 0 and limk→∞ εk = 0,

2. each pk is an εk-proper equilibrium of the game G, and

3. limk→∞ pk
i = pi for every player i ∈ N.

9



The approach to defining transition probabilities would be quite similar to the procedure
outlined above. Firstly, for each player i ∈ N we define the a set of completely mixed
strategies

∆∗
i = {pi ∈ ∆i; pij ≥ δ ∀ sij ∈ Si} , (3.28)

where

δ =
1

m
εm, 0 < ε < 1 (3.29)

with m = maxi∈N |Si|. We then define a point-to-set mapping Fi : ×n
i=1∆

∗
i → ∆∗

i to be the
family of completely mixed strategies contained in ∆∗

i for which player i desires no deviation

Fi (p1, ..., pn) = {p∗i ∈ ∆∗
i ; ui (sij , p−i) < ui (sil, p−i) then pij ≤ εpil, ∀ sij, sil ∈ Sj} .

(3.30)
In this way, for each player i ∈ N , by defining a mixed strategy

p̂∗il =
e|Nij |

∑ki

l=1 e|Nij |
, (3.31)

where
|Nij | = |{sil ∈ Si; ui (sij , p−i) < ui (sil, p−i) and p ∈ ×n

i=1∆
∗
i }| , (3.32)

then it can be shown that the set of mixed strategies Fi (p1, ..., pn) will be a non-empty finite
collection of linear inequalities; by their definition these sets will also be closed convex sets.
In addition each Fi (p1, ..., pn), by the continuity of the payoff function ui (sij , ·) , will also
be upper semi-continuous. As a consequence, the mapping F : ×n

i=1∆
∗
i → ×n

i=1∆
∗
i satisfies

all the conditions of the Kakutani Fixed Point Theorem. In other words there exists some
completely mixed strategy pε ∈ ×n

i=1∆
∗
i such that pε is an ε-perfect equilibrium of G. As

×n
i=1∆i is compact, the sequence ε-perfect equilibria pε → p as ε → 0, where p is the proper

equilibrium of G.
By a similar argument it can be shown the probabilities given in the set Fi (p1, ..., pn)

characterize the transition probabilities of a homogenous Markov chain, which fulfills the
requirements of stationarity - recursiveness and irreducibility. It can be noted that criteria

ui (sij , p−i) < ui (sil, p−i) then pij ≤ εpil (3.33)

resembles quite closely the acceptance criteria employed by the Metropolis-Hastings algo-
rithm.

Theorem 3.2. For any normal form game G =
(

N, (Si)i∈N , (ui)i∈N

)

, it is possible to define

a MCMC algorithm that will provide a proper equilibrium.

Proof. Firstly, for each player i ∈ N a set of completely mixed strategies is defined

∆∗
i = {pi ∈ ∆i; pij ≥ δ ∀ sij ∈ Si} , (3.34)

where

δ =
1

m
εm, 0 < ε < 1 (3.35)
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with m = maxi∈N |Si|. A point-to-set mapping Fi : ×n
i=1∆

∗
i → ∆∗

i is then defined as follows,

Fi (p1, ..., pn) = {p∗i ∈ ∆∗
i ; ui (sij , p−i) < ui (sil, p−i) then pij ≤ εpil, ∀ sij, sil ∈ Sj} .

(3.36)
This mapping contains all completely mixed ε-proper strategies for player i. In this way, for
each player i ∈ N , by defining the following generating and transition probabilities

gi (sih|sij) =
1

|Nij |
(3.37)

where
|Nij | = |{sil ∈ Si; ui (sij , p−i) < ui (sil, p−i) and p ∈ ×n

i=1∆
∗
i }| , (3.38)

and

qi (sil|sih) =
exp (ui (sil, p−i))

∑ki

h=1 exp (ui (sih, p−i))
, (3.39)

we are defining the generating probability of moving from one neighborhood to another.
It can be shown that the probabilities given in the set Fi (p1, ..., pn) characterize the

transition probabilities of a homogenous Markov chain, which fulfills the requirements of
stationarity - recursiveness and irreducibility. It can be noted that criteria

ui (sij , p−i) < ui (sil, p−i) then pij ≤ εpil (3.40)

resembles quite closely the acceptance criteria employed by the Metropolis-Hastings algo-
rithm.

It can be shown that the set of mixed strategies Fi (p1, ..., pn) will be a non-empty finite
collection of linear inequalities; by their definition these sets will also be closed convex sets.
In addition each Fi (p1, ..., pn), by the continuity of the payoff function ui (sij , ·) , will also
be upper semi-continuous. As a consequence the mapping F : ×n

i=1∆
∗
i → ×n

i=1∆
∗
i satisfies

all the conditions of the Kakutani Fixed Point Theorem. In other words there exists some
completely mixed strategy pε ∈ ×n

i=1∆
∗
i such that pε is an ε-perfect equilibrium of G. As

×n
i=1∆i is compact, the sequence ε-perfect equilibria pε → p as ε → 0, where p is the proper

equilibrium of G.

4 An Application to Extensive Game Forms: Selten’s

Horse

As was shown by Selten [24], the perfect equilibria of a game’s strategic and extensive forms
need not coincide. However, Selten showed that an equivalence relationship holds between
the equilibria of any extensive game and its associated agent normal form. This is because
the agent normal form of any game views each node of the game tree, of the extensive form
of the game, as a player in the game. As a consequence each player represents an information
set held by the player and will have an identical payoff function to the player.
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We let Γe define an finite extensive game consisting of a set of n players N = {0,1, ..., n}
and one random player denoted by 0, and a finite game tree K = (T, σ) consisting of a set of
nodes T and a predecessor function σ : D → D. The set of nodes is partitioned into the set
of terminal nodes Z and a set of non-terminal decision nodes D = T − Z. The predecessor
function σ is meant to define a path of successive nodes, and has the following properties:

• σ (do) = ∅, where do is the origin of the game tree K, and

• for {d1, ...., dm} ⊂ D such that σ (d) = dm, then σ (dk) = dk−1.

The non-terminal nodes of the game tree in X are partitioned into player sets {P0, P1, ..., Pn}.
Each player set Pi, i = 1, ..., n, contains the non-terminal decision nodes associated with that
particular player. The player set P0 is the set of non-terminal nodes that are associated with
the random player. For each player i ∈ N , we can define subsets Ii ∈ Pi called informa-
tion sets, such that all nodes within an information set Ii ∈ Pi have the same number of
immediate successors, and all paths intersect an information set at most once.

We can then collect all of these information sets Ii ∈ Pi that are associated with a
particular player i ∈ N and group them into a collection of information sets belonging to
that player i,

Ii = {Ii1, ..., Iimi
} . (4.1)

The tuple I = (I1, ..., In) is the information partition of the game Γe. The implication is
that if the information set Ii ∈ Ii is eligible, i.e. it contains at least one node x ∈ Pi,
player i will not be able to distinguish other nodes contained in this information set based
on information possessed when attempting the move to node x.

With the information partition I a choice set C = {CI : I ∈ ∪n
i=1Ii} can be defined, where

each CI is a partition of the union of sets of successors of node x S (x) = {y; x ∈ P (y)}. The
interpretation is that if player i takes the choice c ∈ CI at information set Iij ∈ Ii , then if
i is at x ∈ I, the next node reached is the element of S (x) contained in c. For the random
player, p0j is the probability distribution associated with the choices for each I0j ∈ I0.

A probability distribution bi is assigned on CI to each information set I ∈ Ii. This
distribution bi is a behavioral strategy, with the set of all these strategies for player i defined
by Bi. The profile of all the players’ behavioral strategies is denoted by b ∈ B := ×n

i=1Bi,
where B is the set of all behavioral strategy combinations. The probability of a particular
realization of the game Γe is denoted by pb (z).

The payoffs of the game are associated with the set of terminal points Z of the game tree
are denoted by the n-tuple h = (h1, ..., hn), where each player i’s payoff is a function of the
terminal points hi (z), z ∈ Z. The payoff profile h is an n-tuple, where the ith element is
defined as

hi (z) =
∑

z∈Zp

pb (z) hi (z) , ∀ z ∈ Z, and i ∈ N.

A pure strategy sij ∈ Si for a player i ∈ N in the extensive game Γe is a sequence of
moves sij =

{

sk
ij

}

, where each sk
ij ∈ Iij ∈ Ii. A mixed strategy pi ∈ ∆i attaches a probability

12
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Figure 4.1: Game tree for Selten’s Horse.

pij = pi (sij) to each sij ∈ Si such that
∑

sij∈Si
pij = 1. A payoff function can now be defined

for each player i ∈ N

hi (pi, p−i) =
∑

sij∈Si

pijhi (sij, p−i) . (4.2)

Kuhn [13] has shown that for arbitrary mixed strategies in games of complete information,
it is possible to find a unique behavioral strategy that is payoff invariant. Therefore it does
not really matter whether player strategies are behavioral or mixed.

Let Γe be an extensive game and I1, ...In be the information sets of players in Γe, the
agent normal form G of Γe associates a player with each information set. In other words,
for each player i ∈ N , let φi be the set of all choices CIi

at Ii, then a strategic game
G =

(

N, (φi)i∈N , (ui)i∈N

)

can be defined, where φi become the pure strategy sets of each
player i ∈ N and the payoff functions ui : ×n

i=1φi → R. Noting that for every player i ∈ N

ui (φi, φ−i) = hi (pi, p−i) , (4.3)

where pi is the mixed strategy that assigns a probability to a choice c made at information
set Ii.

A perturbed game of G is defined by (G, η), where η is a mapping that assigns to every
choice in Γ a positive number ηc such that

∑

c∈Cu

ηc < 1

for every information set u. An equilibrium point b of the strategic game Γ is a perfect
equilibrium if b is a limit point of a sequence {b (η)} as η → 0, where each b (η) is an

13



equilibrium points of the associated perturbed game (Γ, η). Proofs of convergence would
then follow as a natural corollary from the work in the section four.

The game tree of three person extensive game is shown in Figure 4.1 [6, p. 50]. This
example is based on the three player extensive form game used by Selten [24] to illustrate
the existence of perfect equilibrium. It is known that this game possesses both a perfect
equilibrium as well as a “non-rational” subgame perfect equilibria. The perfect equilibrium
for this extensive form game is defined via the perturbed payoff functions:

R1 = γ1(1 − ε2 − 3ε3 + 4ε2ε3) + 3ε3

R2 = 2ε3(2 − ε1) + γ2(1 − ε1 − 4ε3 + 4ε1ε3)

R3 = 1 − ε1 + γ3(2ε1 − ε2 + ε1ε2),

where the γi are being used to define the agents’ the mixed strategies and εi are errors
defined for each player i = 1, 2, 3. Letting the errors approach zero, it can be seen that
perfect equilibrium is defined by (1, 1, 0).

Using these payoffs, an algorithm is constructed that is based on the simulated annealing
algorithm found in van Laarhoven and Aarts [31, p. 10]. The pseudocode for this algorithm
is given below.

begin

Initialize;

M := 0;

repeat

repeat

Perturb(config.i → j, ∆R1) for player 1;

if (∆R1 ≥ 0) then accept

elseif
(

exp
(

−∆R1

c

)

> rand [0, 1)
)

then accept;

if accept then Update(config.j);

Perturb(config.i → j, ∆Rn) for player n;

if (∆Rn ≥ 0) then accept

elseif
(

exp
(

−∆Rn

c

)

> rand [0, 1)
)

then accept;

if accept then Update(config.j);

until equilibrium is approached sufficiently closely;

cM+1 := f (cM);

M := M + 1;

until stop criterion = true;

end
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The results of the simulation are shown below in Figure 4.2 and indicate convergence to
the trembling hand perfect equilibrium.
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Figure 4.2: Simultation results for Selten’s Horse

5 Conclusion

This paper has concentrated on some of the underlying theoretical mechanics of simulated
annealing and how they relate to the trembling hand perfect refinement of Nash equilib-
rium. It has been argued that the trembles that underlie global optimization by simulated
annealing are analogous to the “mistakes” of trembling hand perfection, in that they present
a means of moving from local ε-perfect equilibria towards a perfect Nash equilibrium. The
main contribution of this paper has been to demonstrate that simulated annealing can be
employed to compute the perfect and proper refinement of Nash equilibrium. In addition,
by using the example of “Selten’s Horse”, we demonstrate that simulated annealing can also
be used to compute the Nash equilibrium of extensive form games, via its agent normal form.
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