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1 Introduction

Language is a matter of interpretation, and interpretations will di�er. This fact is of fundamental

importance in the construction of contracts, which are written or verbal agreements that the

parties act in particular ways under particular conditions. For any contract to be successfully

implemented, the parties must agree on whether the relevant conditions apply. A contract that is

ambiguous, in the sense that parties may di�er in their interpretation of the conditions that apply,

and therefore of the actions that are required, will lead to disputes and, ultimately, litigation.

To avoid disputes, parties to a contract may seek to avoid ambiguous terms, even when the

resulting contract is incomplete, in the sense that opportunities for risk-sharing or productive

cooperation are foregone. For example, parties may adopt a standard contract, in which the

terms are well-de�ned as a result of established precedents, even if a variation on the standard

contract could potentially yield a Pareto improvement.

Although the problems with ambiguous contracts have been much discussed in the legal liter-

ature, the central point that ambiguous contractual terms can lead to incomplete contracts has

received relatively little attention from economists. This is because contracts are typically mod-

elled as state-contingent acts, with incompleteness arising from the fact that some states may be

non-contractible or from state-contingent preferences that are ambiguous, in the technical sense

that there exists no well-de�ned probability distribution over the state space. The language in

which contracts are written is either not speci�ed or derived from the state space.

The idea that incompleteness in contracts arises from an inability to specify and contract on

the state space is not new; it has been a standard argument at least since Williamson (1975, 1985)

drew attention to the importance of transactions costs in determining contractual structures.

These transactions costs are typically imputed to incompleteness of the state space. However, as

Maskin and Tirole (1999) observe, incompleteness of the state space is not, in itself, su�cient to

preclude the achievement of the �rst best contract. Provided that the optimal contract does not

depend on welfare-irrelevant distinctions between states, Maskin and Tirole show that an optimal

contract may be achieved that depends only on welfare outcomes and not on knowledge of the

physical state space.
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Segal (1999) has argued that in some complex environments, distinctions between complete

and incomplete contracts might become trivial. Bernheim and Whinston (1998) showed that

incomplete contracts might be chosen by agents who face strategic ambiguity. Spier (1992) has

argued that incomplete contracts might be chosen as signalling devices. Mukerji (1998) and

Mukerji and Talon (2001) discussed incomplete contracts in the presence of the decision-theoretic

concept of `ambiguity', which refers to a situation in which an agent's preferences cannot be

rationalized by a speci�c probability distribution over a commonly known state space.

Board and Chung (2007, 2009) develop both syntactic and semantic descriptions of their object-

based model of unawareness. They show how di�erences in the awareness of parties to a contract

can tempt the more aware party to try to exploit her advantage by drafting ambiguous contin-

gencies that in general would favor her given her greater awareness. Anticipating this, however,

the less aware party may forgo contracting with this party for fear of being exploited. Thus cer-

tain legal doctrines that entail construing ambiguous terms against the drafter, might work to

deter such opportunistic drafting by the more aware party and lead to simpler (albeit incomplete)

contracts being agreed upon.

In this paper, we adopt an alternative approach, in which the language in which contractual

terms are speci�ed is taken as primitive. A contract is simply a set of conditional actions, built

up using an `if t then a else a0' where t is a contractual term (or test) and a and a0 are actions.

We then consider contracts between two parties, using the same contractual language but

with possibly di�erent interpretations of the tests speci�ed in the contract. We de�ne a test

as being conclusive for one party relative to the other party, if whenever it is satis�ed for the

former it is also satis�ed for the latter. If a test is conclusive for both parties then it follows there

is no possibility of disagreement about whether the test is satis�ed or not, and we denote such

tests as unambiguous. Tests that are subject to any possibility of disagreement are described as

ambiguous. Even though we assume both parties are mutually cognizant as to whether a test is

conclusive for one party or not, and hence whether it is unambiguous or not, in situations where

the parties disagree over the outcome of an ambiguous test, disputes may still arise.

It is natural, for a party to consider the range of outcomes that might arise given the ambiguity
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he or she perceives to be associated with the range of possible interpretations by the other party.

We show how this can give rise to preferences that may be represented by a Gul and Pesendorfer

(2009) expected uncertain utility maximizer. Thus, our approach establishes a connection between

aversion to linguistic ambiguity (the sense in which the term `ambiguity' is normally found in

ordinary usage) and state-contingent ambiguity (the sense in which the term is commonly used in

decision theory).

Given these preferences, we show that for a two-agent bargaining process over risk-sharing

contracts, an individually rational and e�cient contract involves a trade-o� between risk and

ambiguity. A �ner contractual speci�cation increases the gains from risk sharing when the contract

is implemented successfully, but also increases the ambiguity of the contract and creates more

possibilities for dispute. In this context, we �nd that risk aversion makes agents more likely to

engage in contracts involving ambiguous terms and discuss the trade o� between risk aversion and

willingness to contract in the face of ambiguity.

In an application we consider a situation in which there exists the possibility of one party

defaulting on performance. We show how ambiguity about the actual loss su�ered by the injured

party as a result of the default, may lead the parties to simplify specify in the contract liquidated

damages, namely, a �xed payment for default without reference to the actual losses su�ered by

the injured party.

The paper is organized as follows. We begin with an illustrative example. In section 3, we

set up the formal language in which contracts are speci�ed. Next, in Section 4, we develop the

concept of contractual ambiguity, and derive preferences over ambiguous contracts. In Section 6

we formulate the associated bargaining problem and characterize the set of individually rational

and e�cient contracts. Section 7, contains our application of our model to liquidated damages. In

Section 8 we discuss the implications of our analysis and its relationship to the existing literature

on incomplete contracts and bounded rationality.
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2 An Illustrative example

In informal discussions of ambiguous contracts, it is common to refer to `gray areas'. Some

contracts, or contingencies speci�ed in contracts, are seen as having gray areas, thereby giving

rise to possibilities of disagreement and dispute, while others are seen as relatively clear-cut and

unambiguous.

We develop these ideas in an example, speci�ed as follows.1 Suppose two individuals Row

(Rowena) and Col (Colin) are contemplating entering into a risk-sharing contract. They will

draw a card from a pack. The card may be all white, all black, all red or it may be white at the

top and black at the bottom. From the viewpoint of an unboundedly rational observer there are

four possible states of the world, one for each card.

Each player sees the world as white, black or red. However, Row always observes the bottom

half of the card, while Col always observes the top half. Thus, if the card is white at the top

and black at the bottom, Row will construe the card is black, while Col will construe it as white.

The underlying state space and the two individuals' partitions of the black{white spectrum are

summarized in the following table, where X denotes a pair of observations that is inconsistent

with the problem description and therefore does not correspond to a state:

Col's observation

Card drawn is: white (at top) black (at top) red (at top)

white (at bottom)
white

white

X X

Row's observation black (at bottom)
white

black

black

black

X

red (at bottom) X X
red

red

Suppose the state-contingent endowments of the two individuals are given in the following bi-

1 We are indebted to Bob Brito for suggesting this example.
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matrix,

Col's endowment

Card drawn is: white (at top) black (at top) red (at top)

white (at bottom)
2

2

X X

Row's endowment black (at bottom)
2

1

3

1

X

red (at bottom) X X
1

3

Each individual faces a single source of uncertainty that is measurable with respect to his

own partition of the state space. We assume that both players are risk-averse and view the three

elements of their respective partitions as `exchangeable' (Chew and Sagi 2006).2 Hence both

parties would prefer the non state-contingent allocation (2; 2) in every state. So, ignoring (for the

moment) any possibility of future disagreement and dispute, both would �nd it attractive to sign

a risk-sharing contract of contingent transfers from Col to Row :

~c =

8>>>>>><>>>>>>:
1 if the card drawn is black

�1 if the card drawn is red

0 otherwise.

.

In the formal framework developed below, if such a contract were signed, the presumption is that

each party will assess which contingency has obtained according to her or his own semantics. For

Row, this entails assessing that `the card drawn is black' is true when she makes the observation

the card drawn `is black (at the bottom)', while for Col, this entails assessing that `the card drawn

is black' is true when he observes the card drawn `is black (at the top)'.

2 In this context, `exchangeable' is equivalent to each individual being indi�erent between betting on any element
of his or her partition.
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The card that is white at the top and black at the bottom creates a possibility for disagreement

since Row will interpret this as `black', and so believe that she is entitled to receive a payment of

1. Col will in the same situation interpret this as `white', so he will expect no payment is required.

Hence, a disagreement will ensue.

In this setup, boundedly rational players are unable (in the absence of some increase in e�ort)

to formulate a state description su�ciently re�ned to encompass this possibility, allowing the

contract to specify a resolution. However, they may nonetheless be aware that disputes are

possible. Depending on the weight they place on this possibility, they may choose a contract

which o�ers only partial hedging, or even no contract at all. This corresponds closely to the risk{

uncertainty distinction of Knight (1921) whose main concern was with uncertainties that could

not be hedged through market contracts such as insurance, and therefore reduced to manageable

risk. Uncertainty of this kind was central to Knight's idea of entrepreneurship.

While we do not formally model the awareness and knowledge of the players using epistemic

logic as in, for example. Fagin et al. (1995), some comment on their presumed awareness and

knowledge is necessary. The awareness of the players includes a number of elements. First, each

player is aware of their own state-contingent description of the world and of the information

available to them. Second, given the description above, each is aware that the other may not have

access to their model of the world. In this example, Row and Col are both aware that each of

them is aware of the statements `the card is black' and `the card is red'. However, each is also

conscious that their model and the model of the other individual may be incomplete. In particular

there may exist other details about the world of which neither is currently aware, that lead to

di�erent interpretations by the two about the semantic content of those statements for the two

players. But, as noted in the introduction, we further assume that both are mutually cognizant

as to whether a test is conclusive or not for an individual.

Thus, the central feature of the example is that players are boundedly rational, but nonetheless

sophisticated enough to reason about their own bounded rationality and that of others. This is

consistent with the observation of Maskin and Tirole (1999, p. 106) that the central problem in

contracting is not incompleteness per se but bounded rationality:
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\if we are to explain `simple institutions' such as property rights, authority (or more

generally decision processes) short-term contracts and so forth a theory of bounded

rationality is certainly an important, perhaps ultimately an essential ingredient."

The central concern of this paper is to develop a model of contracting between parties whose

bounded rationality is embodied in the ambiguity of the language they use to describe the world.

To this end, it is useful to relate propositional or syntactic descriptions of the world to an underly-

ing state space when the parties involved are boundedly rational. We will follow the constructive

decision theory approach of Blume, Easley and Halpern (2006) in which the propositional repre-

sentation is taken as primitive, along with the set of actions on which contingent contracts can be

written.

3 Formal languages and contracts.

We consider two parties i = 1; 2, and following the approach of Blume et al. (2006), we assume

that both players have access to a non-empty set of primitive test propositions T0 = ft1; :::; tKg

and a set of actions A0. Let T denote the closure of T0 under conjunction (^) and negation (:).

A typical action a 2 A0 might be `player i performs service z for player j in return for

consideration w'. Formally, we take A0 to be a compact and convex subset of a separable metric

space.

We are interested in the set of contracts C, which are constructed inductively from the set of

actions A0 and the set of tests T by taking the closure under the `if-then-else' construction. That

is, we take each a in A0 to be a contract, and then we require, for any pair of contracts c and

c0 and any test t in T , that the program `if t then c else c0' should be a contract in C. This

contract requires the parties to follow the course of action as determined by contract c if test t is

satis�ed and follow the course of action as determined by contract c0 otherwise.

Tests and contracts are simply strings of symbols with no inherent semantic content. The

semantics will be derived from preferences of each individual rather than being given in advance.

More precisely, we derive, for each player, a state space �i. Although Blume et al. (2006) allow

for the non-uniqueness of a state space, we adopt their canonical state space and set �i = � = 2T0
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for i = 1; 2 and refer to it as � hereafter.

Hence we may enumerate �s 2 � where s = (s1; :::; sK) is a vector of zeros and ones (a

binary number) and we use si to denote the i'th component of s. Letting 0 denote the number

(0; 0:::0) and S � 1 = 2K � 1 denote (1; :::; 1); the indexes s range from 0 to S � 1, and the

cardinality of the state space is S: Conversely, for any � 2 �; we denote the corresponding index

by s (�) 2 f0; : : : ; S � 1g :

A test interpretation is a function � : T ! 2�, where � (t) is the set of states in which the

test t is true. Notice that the state space induces a test interpretation constructed as follows. For

each ti in T0 = ft1; :::; tKg, the set �(tk) = f�s 2 � : sk = 1g. The test interpretation is then

inductively extended to tests in T by the rule: for any t; t0 2 T , �(t^ t0) = �(t)\�(t), and �(:t) =

�� �(t).

Each state � 2 � can be identi�ed with a test t(�) = t1 (�)^ :::^ tK (�) 2 T de�ned as follows.

For each k = 1; :::;K let:

tk(�) =

8>><>>:
tk if sk (�) = 1;

:tk if sk (�) = 0:

By construction �(t(�)) = f�g meaning the test t(�) is satis�ed only at the state �.

For any a 2 A0, fa is the unconditional state-contingent action fa (�) = a for all � 2 �. Fix a

pair of contracts c and c0 in C with associated state-contingent actions fc and fc0 . Then for any

test t in T , the state-contingent action associated with the contract c00 = `if t then c else c0' is

given by fc00 (�) = fc (�) if � 2 � (t), and fc00 (�) = fc0 (�) if � =2 � (t). Hence it follows from the

inductive construction of the set of contracts above that for each c in C, there is an associated

state-contingent action fc : �! A0.

For any given state-contingent action f , there are many contracts that yield that state-

contingent action. For a given state-contingent action f , we de�ne the associated canonical contract

cf with an exhaustive speci�cation given by

if �0 then f (�0) else if �1 then f (�1) else ... else f (�S�1)

8



3.1 The Illustrative example continued

To illustrate the ideas and concepts we have introduced above, let us apply this framework to the

example discussed in section 2.

Set T0 = ft1; t2g, where t1 corresponds to the test proposition, `card drawn is red' and t2

corresponds to test proposition, `card drawn is black.' Formally, the state space � is given by

f�(0;0), �(0;1), �(1;0), �(1;1)g or equivalently f�0, �1, �2, �3g but for ease of exposition we denote

it by � = fW, B, R, RBg, derived from the table

:t2 t2

:t1 W B

t1 R RB

.

The stateW (respectively, B , R) corresponds to the state of the world in which the card drawn

is `red' (respectively, black, white), while the state RB , is the `impossible' state in which the card

is both red and black.

The set of actions is the set of transfers from column to row, A0 = [�3; 3]. The set of contracts

can thus be characterized by state-contingent transfers (A0)
�
.

Without loss of generality, we take the endowment in the `impossible' state RB to be (0; 0).

Hence the state-contingent endowments are given by

State

Ind. W B R RB

zRow� 2 1 3 0

zCol� 2 3 1 0

:

4 Introducing ambiguity

Because we have chosen formally identical state spaces for the players, the test-interpretation

of each player and the language of each player are identical. The distinction and the source of

disputes is thus purely semantic. Disputes arise from the players disagreeing about the state that
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has obtained, or, equivalently, which tests have been satis�ed. In this section we �rst introduce

ambiguity by way of ambiguous tests and show how this makes some contracts `ambiguous'. We

then develop a model of ambiguity averse decision-makers.

4.1 Conclusive and ambiguous tests and contracts

In this section we introduce the notion of ambiguous tests. This notion will be based on a primitive

notion of conclusiveness of a test. The idea of conclusiveness of a test t for an individual i with

respect to individual (3� i) is that if she �nds herself in a position where she assesses that t is

satis�ed, then she is sure that individual (3� i) will assess t as satis�ed also. The set of conclusive

tests for individual i will be denoted by T iC . We presume that the individuals are mutually

cognizant of T 1C and T
2
C . The test t is unambiguous if it is conclusive for both individuals. The

set of unambiguous tests for individuals 1 and 2 is denoted TU = T
1
C \ T 2C :3

To ensure that the sets of conclusive tests match our intuition, we assume that T 1C and T 2C

exhibit the following properties.

Properties of Conclusive Tests: For any pair of tests t and t0 in T :

(i) the test t _ :t is in T iC (that is, all tautologies are conclusive);

(ii) if the test t is in T iC then the test :t is in T
(3�i)
C (that is, the negation :t is conclusive

for the individual (3� i) with respect to i);

(iii) if the tests t and t0 are in T iC , then the test t _ t0 is in T iC (that is, T iC is closed under

disjunction);

(iv) if �(t) = �(t0) and the test t is in T iC , then the test t
0 is also in T iC .

In a speci�c example, there will typically be some subset of tests that we would like to be

conclusive. Recall that in the illustrative example, the primitive tests are T0 = ft1; t2g, where

t1 is the test proposition `card drawn is red' and t2 is test proposition `card drawn is black'. To

capture this example, we would like a test that proves the card is Red (t1 ^ :t2) to be conclusive

3 In a model with more than two individuals, it would be necessary to use the notation T 1;2U , since the set of
unambiguous tests is speci�c to the given pair (1; 2) : In the two-player model presented here, this is unnecessary
and superscripts are dropped for simplicity.
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for each player, a test that proves the card is white (:t1 ^ :t2) to be conclusive for Row, and

a test that proves the card is black (:t1 ^ t2) to be conclusive for Col. This implies that f(t1 ^

:t2); (:t1 ^ :t2)g � TRowC and that f(t1 ^ :t2); (:t1 ^ t2)g � TColC . To ensure that the properties

(i) - (iv) of conclusive tests are satis�ed, we need to extend the sets. We will show that there is a

unique smallest extension which satis�es the four properties.

For this, let (T1; T2) be a pair of test sets satisfying Ti � T for i = 1; 2. We say that (T 01; T 02)

is conclusive extension of (T1; T2) i� Ti � T 0i � T for i = 1; 2 and (T 01; T
0
2) satis�es properties (i)

to (iv) of conclusiveness. Let (T 01; T
0
2) and (T

00
1 ; T

00
2 ) be two conclusive extensions of (T1; T2). We

say that (T 01; T
0
2) is smaller than (T

00
1 ; T

00
2 ) i� T

0
i � T 00i for i = 1; 2.

Let T (T1; T2) denote the set of all conclusive extensions of the pair (T1; T2). De�ne the pair

(T �1 ; T
�
2 ) by T

�
i =

T
(T 01;T

0
2)2T (T1;T2)

T 0i for i = 1; 2.

Proposition 1 Let (T1; T2) be a pair of test sets satisfying Ti � T for i = 1; 2. The pair (T �1 ; T �2 )

is a conclusive extension of (T1; T2), and it is smaller than any other conclusive extension of

(T1; T2):

Proof. First we show that (T �1 ; T
�
2 ) is a conclusive extension of (T1; T2). For this, we need

to show that Ti � T �i � T and that (T �1 ; T �2 ) satis�es (i) to (iv). Clearly T �i � T since T �i is the

intersection of sets that are all subsets of T . Fix i. Since each conclusive extension (T 01; T
0
2) 2

T (T1; T2) satis�es Ti � T 0i , T �i will be a superset of Ti provided T (T1; T2) is non-empty. Since the

pair (T; T ) is a conclusive extension of any given pair of test sets (T1; T2), we have non-emptiness

of T (T1; T2). Thus, Ti � T �i � T .

Next, observe that the properties (i) to (iv) of conclusiveness of (T �1 ; T
�
2 ) follow from the

respective properties on each conclusive extension (T 01; T
0
2) 2 T (T1; T2).

Finally, consider any (T 01; T
0
2) 2 T (T1; T2) and �x i, and t 2 T �i =

T
(T 001 ;T

00
2 )2T (T1;T2)

T 00i . Hence,

t 2 T 0i . Hence, (T �1 ; T �2 ) is smaller than any conclusive extension of (T1; T2).

In what follows, we will always presume that we are using the smallest conclusive extension

for a given application.

The next proposition shows that the properties of conclusive tests guarantee that any test
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which is satis�ed in every state or in no state is unambiguous and that the set of unambiguous

tests is closed under negation and conjunction.

Proposition 2 Fix T 1C and T
2
C . If T

1
C and T

2
C satisfy the properties of conclusive tests then for

each pair of tests t and t0 in T :

(i) if �(t) = � or � (t) = ? then t 2 TU ;

(ii) if t,t0 2 TU , then (a) :t 2 TU and (b) t ^ t0 2 TU

Proof. (i) First, let � (t) = �. By property (i), the test t _ :t is in T iC for i = 1; 2. Since

� (t _ :t) = � = � (t), it follows by property (iv) and the de�nition of an unambiguous test that

t 2 TU : Next, let � (t) = ?. Then, � (:t) = �, so as just shown above using properties (i) and

(iv), the test :t is in TU . Then, by property (ii), the test ::t is in T iC for i = 1; 2, and so by the

de�nition of an unambiguous test, the test ::t 2 TU . Noting that �(t) = �(::t), it follows from

property (iv) that t 2 TU .

(ii) Let t,t0 2 TU . Then, t,t0 2 T iC for i = 1; 2. (a) Consider :t. By property (ii) and

the de�nition of an unambiguous test, :t 2 TU ; (b) Consider t ^ t0. Observe that �(t ^ t0) =

�(:(:t _ :t0)). By properties (ii) and (iii) and the de�nition of an unambiguous test, the test

:(:t _ :t0) 2 TU . Thus applying property (iv), t ^ t0 2 TU .

Given that the two individuals are mutually cognizant of T 1C and T
2
C and that they satisfy the

four properties listed above, it follows that for any contract of the form `if t then a else a0,' if t is an

unambiguous test then both individuals anticipate that they will agree whether or not test t has

been satis�ed and thus they will agree whether or not the contract calls for action a or for action

a0. If, however, the test is conclusive only for individual i and is not conclusive for individual

(3� i), then although i anticipates that when she has assessed test t is satis�ed individual (3� i)

will agree the contract calls for action a, individual (3� i) believes when he has assessed test t is

satis�ed, there may be a disagreement with i about whether the contract calls for action a or a0.

But it follows from property (ii) that individual (3� i) anticipates that when he has assessed test

t is not satis�ed, individual i will also have assessed that test t is not satis�ed and so will agree

that the contract calls for action a0. Individual i, on the other hand, anticipates that when she
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has assessed that test t is not satis�ed there may be a disagreement with individual (3� i) about

whether the contract calls for action a or a0.

We can use the test interpretation to derive the set of unambiguous events.

De�nition 1 The set of unambiguous events EU � 2� is given by:

EU = fE � � : � (t) = E for some t 2 TUg .

The set of ambiguous events EA = 2� � EU .

Lemma 3 The set of unambiguous events EU is an algebra of subsets of �, that is, it is non-empty,

and closed under taking complements and intersection.

Proof. Assertion (i) of Proposition 2 implies that EU is non-empty. Consider any pair of

unambiguous events E and E0 in EU . Since they are unambiguous events, there must exist tests

t and t0 in TU , such that � (t) = E and � (t0) = E0. Assertion (ii) of Proposition 2 states that

TU is closed under negation and conjunction, so the tests :t and t ^ t0 are also in TU . Since

� (:t) = �� E and � (t ^ t0) = E \ E0, the events �� E and E \ E0 are unambiguous.

For each � 2 �, and for each individual i, we can derive from the set of unambiguous tests for

individual i, the collection of possible states the other individual ((3� i) may have determined as

having obtained as follows.

De�nition 2 (Possibilty of Dispute Set for i) Suppose T iC � T , is the set of conclusive tests

for individual i. For each � in �, de�ne the possibility-of-dispute set for i associated with state �

to be:

Di (�) := f�0 2 � : for each t 2 T iC ; � 2 � (t)) �0 2 � (t)g:

By construction, the set Di (�) comprises those states that cannot be distinguished from � by

a conclusive test for i being satis�ed. Clearly, � 2 Di(�) for each � 2 �, so Di(�) 6= ? for each

� 2 �. We will refer to
�
Di (�)

	
�2� as the possibility of disputes for i.

For each � 2 � we can de�ne the smallest unambiguous event E(�) containing � by E(�) :=T
E2fF2EU :�2Fg

E. We have the following facts which shows that coarsest common-re�nement of
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�
D1 (�)

	
�2� [

�
D2 (�)

	
�2� is the �nest unambiguous partition of �. More speci�cally, for each

state �, the possibility-of-dispute set for i, Di(�), is a subset of E (�) with equality, if and only if

D1 (�) = D2 (�), and Di(�) is a singleton if and only if the test t(�) associated with the state �

is an conclusive test for i.

Lemma 4 For each � 2 �: (a) Di(�) � E(�) and D1(�) = D2 (�) ) Di (�) = E(�); (b)

Di(�) = f�g if and only if t(�) 2 T iC .

Proof. (a) First we show Di(�) � E(�). Suppose that �0 2 Di(�), but �0 =2 E(�). Observe

that E(�) 6= ?. Hence, there must be some E 2 fF 2 EU : � 2 Fg, and �0 =2 E. Since E 2 EU ,

there is a test t 2 TU such that �(t) = E. Also, � 2 E (�). Since �0 2 Di(�), it follows from

the de�nition of Di(�) that �0 2 �(t) = E, which is a contradiction. Hence, we conclude that

Di(�) � E(�).

Next we show that E(�) � Di(�) whenever D1 (�) = D2 (�). Suppose that �0 2 E(�), but

�0 =2 D1(�) = D2 (�). Then there is some test t 2 TU such that � 2 �(t) but �0 =2 �(t). Then �(t)

is an unambiguous event containing � but not containing �0. Hence E(�) � �(t),and �0 =2 E(�),

which is again a contradiction. Hence we conclude that E(�) � Di(�).

(b) (If) Clearly, f�g � Di(�) from the de�nition of Di(�). Next, since t(�) 2 T iC and �(t(�)) =

f�g, it follows that if �0 6= �, then �0 =2 Di(�), that is, Di(�) � f�g.

(Only-if) Since Di(�) = f�g, it follows that for each �0 6= �, there is a test t0 2 T iU such that

� 2 �(t0) and �0 =2 �(t0). Since T iC is closed under conjunction by assertion (ii) of Proposition 2,

we can take the conjunction of these tests over �� f�g to obtain a conclusive test for i, t� 2 T iC

that excludes everything but �, that is, �(t�) = f�g. Since �(t(�)) = f�g = �(t�), it follows from

property (iv) of the conclusive test set T iC that t(�) 2 T iC .

Notice that if a contract is measurable with respect to the unambiguous partition,
�
Ei (�)

	
�2�

although the individuals might disagree about the actual state that has obtained, they will never

disagree about which action the contract prescribes. Hence such contracts are viewed as unam-

biguous.

De�nition 3 A contract is unambiguous if for all for all �; �0 2 �, E (�) = E (�0) ) fc (�) =

14



fc (�
0). We denote by CU the set of unambiguous contracts.

5 Preferences over contracts.

To model the individual's preferences over contracts, we adopt the expected uncertain utility model

of Gul and Pesendorfer (2009). To employ their model, we take the `state-space' to be the product

space of the individual state spaces ���. Preferences % are assumed to be de�ned over acts, that

is functions f from � � � to the set of outcomes, which following Gul and Pesendorfer, we take

to be a interval of �nite length [m;M ] of monetary outcomes. An expected separable uncertain-

utility (ESUU) decision maker is characterized by a preference scaling function v : [m;M ]! R, an

ambiguity attitude parameter � 2 [0; 1] and a `prior' (E ; �), where E is a sigma-algebra of subsets

of �� �, and � is a probability measure on E .

The decision maker evaluates each act f according to its expected interval-utility, where the

interval-utility of the interval [x; y], x � y, is given by the separable interval-utility function

u (x; y) = �v (x) + (1� �) v (y).

To compute V (f), we �nd f�, the largest E�measurable function satisfying f� � f , and f+,

the smallest E�measurable function satisfying f+ � f . Gul & Pesendorfer (2009) refer to (f�; f+)

as the E�measurable envelope of the act f . For a given prior (E ; �) they show for each act

there is a unique (up to a set of ��measure 0) E�measurable envelope.4 The expected separable

uncertain-utility of f is thus given by:

U (f) =

Z
���

u (f�; f+) d�

= �

Z
���

v (f�) d�+ (1� �)
Z
���

v (f+) d�. (1)

Notice that for any act f that is E�measurable, f� = f = f+, and so U (f) =
R
��� v (f) d� is

the standard subjective expected utility.

We presume that each individual i is an ESUU maximizer, so her preferences over acts can be

represented by the 4-tuple hE i; �i; vi; �ii.

For each individual i, we use her set of conclusive tests T iC to generate the algebra E i, and we

4 See Gul & Pesendorf (2009, Lemma 2, p4).
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present a method for translating each contract c in C into an act f ic : �� �! [m;M ]. Thus her

preferences over acts induce a preference ordering over contracts given by V i (c) = U i
�
f ic
�
.

The algebras E1 and E2 are uniquely determined from a given contracting problem using the

set of primitive propositions T0 and the set of conclusive test sets T
C
1 and TC2 in the following

way. First, we generate the canonical state space � from the set of test propositions T0. Next,

E1 is de�ned to be the algebra generated from the partition
�
f�g �D1 (�) : � 2 �

	
[ ff�g �

�nD1 (�) : � 2 �g; and E2 is the algebra generated from the partition
�
D2 (�)� f�g : � 2 �

	
[�

�nD2 (�)� f�g : � 2 �
	
.

Since each party presumes the other will see something within her or his own dispute set,

we require that the measures �1 and �2 de�ned on E1 and E2, respectively, satisfy the following

condition: for all � in �,

�1
�
f�g � �nD1 (�)

�
= �2

�
�nD2 (�)� f�g

�
= 0:

The other parameters v1; v2; �1; �2 are as in Gul-Pesendorfer (2009).

It still remains to describe how a given contract c is translated into an act for each individual i.

For this, let �i denote the i'th component of ���, and let yi : A��i ! [m;M ] be the outcome

function where yi (a; �) is the outcome in [m;M ] that results for individual i when action a from

A is undertaken and she observes � in �.

We presume that individual 1 associates the contract c with the `act' f1c : � � � ! [m;M ],

where,

f1c (�; �
0) = y1 (fc (�

0) ; �) ,

and individual 2, associates the contract c with the `act' f2c : �� �! [m;M ], where

f2c (�
0; �) = y2 (fc (�

0) ; �) .

Thus, in her evaluation of a contract it is as if each individual presumes that the contract c will

be implemented according to what the other party sees.5

5 In situations where, the individuals' interpretations are opposed, ex post, specifying the act this way could be
viewed as a reduced form of the (certainty-equivalent) equilibrium outcome the individual expects to receive from a
dispute. For example, suppose that individuals anticipate a dispute will lead to a `war of attrition' game (Maynard
Smith, 1974) in which each player's equilibrium payo� is equal to their security level. In this case, that corresponds
to the utility of the outcome associated with the other player's interpretation. We thank Roger Myerson for the
suggestion that disputes might be viewed as wars of attrition.
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Notice that any mapping from ��� to A that is measurable with respect to �i is measurable

with respect to E i. It is therefore convenient for each i = 1; 2, to denote by �i�i the marginal

distribution of �i on �i.

Putting this all together we have that an ESUU decision maker


E i; �i; vi; �i

�
, with output

function yi will evaluate a contract c according to the function:

V i (c) =
P
�2�

�i�i (�)

�
�i min

�02Di(�)
vi
�
yi (fc (�

0) ; �)
�
+
�
1� �i

�
max

�02Di(�)
vi
�
yi (fc (�

0) ; �)
��

5.1 The illustrative example continued

Returning to our illustrative example, recall T0 = ft1; t2g, where t1 is the test proposition `card

drawn is red' and t2 is test proposition `card drawn is black'.

As Row only sees the bottom of a card and Col only sees the top, it follows as remarked earlier

that TRow = f(t1 ^ :t2); (:t1 ^ :t2)g � TRowC and that TCol = f(t1 ^ :t2); (:t1 ^ t2)g � TColC .

We take (TRowC ; TColC ) to be the smallest conclusive extension of (TRow; TCol).

It follows that the possibility of disputes sets for Row and Col are given by: DRow (W ) = fW g,

DRow (B) = fB , W g, DRow (R) = fRg, DRow (B) = fB , W g and DRow (RB) = fRBg; and

DCol (W ) = fB ,W g, DCol (B) = fBg, DCol (R) = fBg, and DCol (RB) = fRBg.

The prior
�
ERow; �Row

�
is admissible if ERow is the algebra generated from the partition:

ff(W,W )g; f(W,B) ; (W,R) ; (W,RB)g; f(B,W ) ; (B,B)g; f(B,R) ; (B,RB)g

; f(R,R)g; f(R,W ) ; (R,B) ; (R,RB)g; f(RB,RB)g; f(RB,W ) ; (RB,B) ; (RB,R)gg

and

�Row (f(W,B) ; (W,R) ; (W,RB)g) = �Row (f(B,R) ; (B,RB)g)

= �Row (f(R,W ) ; (R,B) ; (R,RB)g) = �Row (f(RB,W ) ; (RB,B) ; (RB,R)g) = 0.

Similarly, the prior
�
ECol; �Col

�
is admissible if ECol is the algebra generated from the partition:

ff(W,W ) ; (B,W )g; f(R,W ) ; (RB,W )g; f(B,B)g; f(W,B) ; (R,B) ; (RB,B)g

; f(R,R)g; f(W,R) ; (B,R) ; (RB,R)g; f(RB,RB)g; f(W,RB) ; (B,RB) ; (R,RB)gg
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and

�Col (f(R,W ) ; (RB,W )g) = �Col (f(W,B) ; (R,B) ; (RB,B)g)

= �Col (f(W,R) ; (B,R) ; (RB,R)g) = �Col (f(W,RB) ; (B,RB) ; (R,RB)g) = 0.

For concreteness, further suppose that

�Row�1 (W ) = �Row�1 (B) = �Row�1 (R) =
1

3
, �Row�1 (RB) = 0, and

�Col�2 (W ) = �Col�2 (B) = �
Col
�2 (R) =

1

3
, �Col�2 (RB) = 0.

We shall also assume that for both individuals, v (:) is the common continuous, strictly concave

and strictly increasing utility function over �nal wealth.

Finally if we take the ambiguity attitude parameter �i = � > 0 to be the same for both

players, then the expected separable uncertain-utility of a contract for Row and Col, are generated,

respectively, by the functionals:

V Row (c) =
1

3
v (fc (W ) + 2) +

1

3

�
(1� �) max

�2fB;W g
v (fc (�) + 1) + � min

�2fB;W g
v (fc (�) + 1)

�
+
1

3
v (fc (R) + 3) (2)

V Col (c) =
1

3

�
(1� �) max

�2fB;W g
v (�fc (�) + 2) + � min

�2fB;W g
u (�fc (�) + 2)

�
+
1

3
v (�fc (B) + 3) +

1

3
v (�fc (R) + 1) : (3)

Some aspects of these preferences are noteworthy. The players' (ex ante) preference for signing

a given hedging contract will be stronger the more risk-averse they are, that is, the stronger their

preference for the non-stochastic allocation over the original endowment. Their preference for

signing a hedging contract will be less the more weight they place on the possibility of di�erent

interpretations giving rise to disputes. Thus risk and ambiguity work in opposite directions. This

result applies generally to problems involving ambiguous risk sharing contracts.

6 The bargaining problem

We consider now the bargaining the two individuals can engage in, where the set of alternatives

over which bargaining is to be conducted is taken to be some subset of the set of contracts C,
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characterized in section 3. For the bulk of the paper we use the entire set of contracts C. However,

in Section 7, we use a subset of C in an application of our theory to liquidated damages. For ease

of exposition, however, we give the results of this section assuming the full set of contracts C. We

further assume that there is a designated contract c0 2 C, which we take to be the disagreement

action that will result should the bargaining process break down and no agreement is reached. We

restrict our attention in what follows to individuals with ESUU preferences, that is, preferences

admitting a expected utility representation of the form (1).

As C and c0 will be �xed throughout, we shall identify the bargaining problem with the pair

of preferences relations of the bargainers over C. Thus a bargaining problem in our set-up can be

identi�ed by a tuple
�

E1; �1; v1; �1

�
;


E2; �2; v2; �2

��
with associated utility representations V 1

and V 2. So that the problem is not vacuous, we assume there exists a contract ĉ in C such that

V i (ĉ) > V i (c0), i = 1; 2. That is, ĉ (strictly) Pareto dominates c0.

Denote by B the class of Bargaining problems for the analysis. To aid the analysis, it is conve-

nient to de�ne the cardinal bargaining problem induced by the preferences of the two bargainers

in the following way.

De�nition 4 Fix a bargaining problem
�

E1; �1; v1; �1

�
;


E2; �2; v2; �2

��
in B. The cardinal bar-

gaining problem associated with this bargaining problem is the set B � R2, given by

B =
�
(v1; v2) : 9c 2 C; (v1; v2) �

�
V 1 (c) ; V 2 (c)

�	
.

Notice that B is comprehensive by construction. Since A0 is compact, it follows that C is

compact as well, and hence it follows by the construction of B that it is closed. To allow for a

simple and convenient characterization of the set of individually rational and e�cient contracts

in a given bargaining problem we assume the bargaining problem exhibits the following property

introduced by Grant and Kajii (1995).

De�nition 5 (C-Convexity) A bargaining problem
�

E1; �1; v1; �1

�
;


E2; �2; v2; �2

��
in B ex-

hibits C-convexity if for any pair of contracts c and c0 in C, there exists a contract c00 in C such

that

V i (c00) � 1

2
V i (c) +

1

2
V i (c0) , i = 1; 2.
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A su�cient condition for a bargaining problem to exhibit C-convexity, is for the (state-

dependent) utility functions vi �
�
yi (�; �)

�
: A! R to be concave in a.6

As the name suggests, a bargaining problem that exhibits C-convexity has associated with it

a convex cardinal bargaining problem.

Lemma 5 If
�

E1; �1; v1; �1

�
;


E2; �2; v2; �2

��
in B is a C-convex bargaining problem then the

associated cardinal bargaining problem B is convex.

Proof. Fix an arbitrary pair (v1; v2) and (v
0
1; v

0
2) in B. To establish that B is convex it is

su�cient to show that
�
1
2v1 +

1
2v
0
1;
1
2v2 +

1
2v
0
2

�
is also in B. Since (v1; v2) and (v

0
1; v

0
2) are both

in B, it follows from the de�nition of B that there exists contracts c and c0 in C, such that�
V 1 (c) ; V 2 (c)

�
� (v1; v2) and

�
V 1 (c0) ; V 2 (c0)

�
� (v01; v02). By C-convexity there exists a contract

c00 in C, such that V i (c00) � 1
2V

i (c) + 1
2V

i (c0), i = 1; 2. Hence,

�
V 1 (c00) ; V 2 (c00)

�
�

�
1

2
V 1 (c) +

1

2
V 1 (c0) ;

1

2
V 2 (c) +

1

2
V 2 (c0)

�
�

�
1

2
v1 +

1

2
v01;
1

2
v2 +

1

2
v02

�
,

as required.

If all bargaining problems in B are convex, then for each problem we have a simple character-

ization of the set of individually rational and e�cient contracts: they are the contracts that are

at least as good for both individuals as the disagreeement contract c0 and maximize a weighted

utilitarian social welfare function, for some set of (normalized) non-negative weights.

Proposition 6 Suppose the bargaining problem
�

E1; �1; v1; �1

�
;


E2; �2; v2; �2

��
in B is C-convex.

Then the contract c� is individually rational and e�cient if and only if

min
��
V 1 (c)� V 1 (c0)

�
;
�
V 2 (c)� V 2 (c0)

�	
� 0

and

c� 2 argmaxc2C �V 1 (c) + (1� �)V 2 (c) , for some � in [0; 1] . (4)

6 This holds naturally for risk-sharing contracts in which the action a 2 A0 � R corresponds to a transfer of size
a from bargainer 2 to bargainer 1, and vi �

�
yi (�; �)

�
= �i

�i
(�) v

�
a� (�1)i�1 + zis

�
is the probability weighted

utility of bargainer i's �nal wealth in state s after the transfer has been made. Concavity of vi �
�
yi (�; �)

�
then

follows naturally from risk aversion (that is, concavity of v the utility index over wealth).
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The proof of Proposition 4 follows from the application of a standard separating hyperplane

theorem for convex sets and so is omitted.

6.1 The illustrative example continued.

Taking c0 = 0 (that is, no transfer is made), and denoting V
Row (c0) = V

Col (c0) = �u, an inidivid-

ually rational and e�cient contract c for the illustrative example developed in section 5.1 is one

for which V Row (c) � �u, V Col (c) � �u and c is a solution to the maximization problem,

max
h(fc(W );fc(B);fc(R))2[�3;3]3i

�V Row (c) + (1� �)V Col (c) , for some � in [0; 1] .

For given � in [0; 1] the solution c� (�) with associated state-contingent transfers (0; fc� (R) ; fc� (B) ; fc� (W ))

(and assuming an interior solution with fc� (R) � fc� (W ) � fc� (B)), satis�es the �rst-order con-

ditions:

fc� (W ) : � [v0 (fc (W ) + 2) + �v0 (fc (W ) + 1)]� (1� �) [(1� �) v0 (�fc (W ) + 2)] = 0:

fc� (B) : � (1� �) v0 (fc (B) + 1)� (1� �) [�v0 (�fc (B) + 1) + v0 (�fc (B) + 3)] = 0

fc� (R) : �v0 (fc (R) + 3)� (1� �) v0 (�fc (R) + 1) = 0

Or rearranging, we obtain:

v0 (fc� (W ) + 2) + �v0 (fc� (W ) + 1)

(1� �) v0 (�fc� (W ) + 2)

=
(1� �) v0 (fc� (B) + 1)

v0 (�fc� (B) + 3) + �v0 (�fc (B) + 2)
=

v0 (fc� (R) + 3)

v0 (�fc� (R) + 1)
=
(1� �)
�

. (5)

For the symmetric weighted utilitarian social welfare function (that is, � = 1=2), we see

immediately from (5) that for � = 0, the solution is (0;�1; 1; 0). That is, when the decision places

all the weight from the possbility of dispute on his own interpretation being implemented, the

symmetric solution is the full risk-sharing contract described in section 2.

To see what happens for � = 1=2 and � > 0, we have from (5) that fc� (R) = 1 and furthermore

whenever fc� (B) > 1=2 > fc� (W ) holds, fc� (B) and fc� (W ) are the unique solutions to:

1

(1� �)
v0 (�fc� (B) + 3)
v0 (fc� (B) + 1)

+
�

(1� �)
v0 (�fc� (B) + 2)
v0 (fc� (B) + 1)

= 1 (6)

1

(1� �)
v0 (fc� (W ) + 2)

v0 (�fc� (W ) + 2)
+

�

(1� �)
v0 (fc� (W ) + 1)

v0 (�fc� (W ) + 2)
= 1. (7)
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respectively. Notice that the LHS of (6) is increasing in fc� (B) and the LHS of (7) is decreasing

in fc� (W ), so while fc� (B) >
1
2 > fc� (W ) the solution is well-de�ned for each corresponding �.

For the critical value �̂ for which fc� (B) = fc� (W ) = 1
2 , that is, �̂ =

�
1�

�
v0
�
5
2

�
=v0
�
3
2

���
=2,

the optimal symmetric contract is the unambiguous contract: `if t1 then �1 else 1
2 ,' that is, if the

card drawn is red then Row pays Col 1, and otherwise Col pays Row 1
2 . This remains the optimal

contract for any � > �̂, since the state-contingent act associated with this contract
�
�1; 12 ;

1
2 ;

1
2

�
satis�es

v0 (fc� (R) + 3)

v0 (�fc� (R) + 1)
=

v0 (fc� (B) + 1) + v
0 (fc� (W ) + 2)

v0 (�fc� (B) + 3) + v0 (�fc� (W ) + 2)
= 1,

the �rst-order conditions for the optimal unambiguous contract.

7 An application: Liquidated Damages

To be e�ective, a contract must specify some sanction to be applied if one or other party fails to

perform their obligations. In some cases, this is a relatively simple matter: failure to perform may

be held to nullify the contract.

In other cases, however, failure by one party to perform an obligation may cause damage to

the other.

For concreteness, let us consider an example where a supplier contracts with a builder to

deliver materials on a given date. However, under certain conditions (expressed as tests), the

supplier may be unable to deliver, and may default, declaring force majeure. Failure to deliver on

time may force the builder to source the supplies elsewhere at high cost, or to delay the project.

Thus, neither nullifying the contract nor requiring (delayed) performance is an adequate remedy.

The costs of failure will depend on a variety of factors, which may be represented by tests. For

example, rainy weather might halt construction with the result that the supplier's default causes

no additional cost. In other cases, the default may occur at a crucial point in the project, creating

unusually large damages.

In the absence of bounds on rationality, the parties could agree on a contract that listed all

possible default states, and speci�ed a payment to be made in each case. The bargaining solution

in this case, derived from the state-dependent preferences of both parties, will be referred to as

22



the �rst best contract. However, with ambiguity arising from bounded rationality, the �rst-best

contract may no longer be chosen.

One solution, in the presence of ambiguity, is for the contract to specify that the defaulting

party should compensate the other party an amount depending only on the amount of their loss.

In the event of a dispute over the magnitude of the loss, a court or other external arbiter will

determine the payment. If the loss amounts are unambiguous, then this type of contract might

be chosen in this setting.

Another possibility is that of liquidated damages, in which the payment for a speci�c breach is

�xed in the contract, without reference to the actual losses su�ered by the injured party. This type

of contract might result when the loss amounts are ambiguous and contracting on them would

result in excessive disputes.

We now consider how these three alternative contracts may be represented. Here, we restrict

attention for our Nash bargaining to a subset of the full set of contracts C characterized in

section 3. We begin by assuming that the set of primitive tests T0 includes: (a) (default test) an

unambiguous test td, interpreted as `the test that party 1 must default'; (b) (set of non-default

tests) a set T̂ of unambiguous non-default tests which apply only in the non-default state. That

is, the set of tests T̂ � T , are also unambiguous. Thus, the only potential disputes relate to the

consequences of default, and not to the question of whether party 1 has in fact defaulted.

The action set A = Â � AM is the Cartesian product a set of actions Â relevant to the

performance of the contract and a set of payment actions AM = fam : m 2 [�M;M ]g. The set Â

is assumed to include the default action a0. Actions am 2 AM are interpreted as `party 1 (2) pays

m dollars to party 2 (1)' for positive (negative) values of m. Actions â 2 Â=ao are unavailable or

prohibitively costly to party 1 in the event � (td), the default event.

Thus, any feasible contract c must satisfy

fc (�) 2 Â�AM � 2 � (:td)

fc (�) 2 fa0g �AM � 2 � (td)

That is, the contract speci�es a set of actions to be performed, and payments to be made, in
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the absence of default and a set of payments to be made in the presence of default. Payments made

in the presence of default are referred to as damages payments and are assumed to be positive,

that is, the defaulting party 1 makes a payment to party 2.

We assume that, for each party, the outcome function yi takes the separable form

yi ((â; am) ; �) = w
i
� (â) +m

where wi� (â) may be interpreted as the monetary value to party i of the action â performed in

state �. Hence, for any default state � 2 � (td), �wi� (a0) may be interpreted as the loss incurred

by party i in state �, consequent on default. For simplicity, we also presume that the disagreement

contract gives each party zero utility and that the default amounts that can occur are given by

the �nite set Z � R+.7

In the absence of ambiguity, the Nash bargaining solution contract must satisfy the risk-sharing

condition that, for any �, �0 2 � (td).

�1�1 (�)
�
v1
�0 �
w1� (a0)� am (�)

�
�1�1 (�

0) (v1)
0
(w1�0 (a0)� am (�0))

=
�2�2 (�)

�
v2
�0 �
w2� (a0) + am (�)

�
�2�2 (�

0) (v2)
0
(w2�0 (a0) + am (�

0))

Since the contract is unambiguous in the absence of default, this contract will, in general, be

unambiguous if and only if the set of unambiguous tests is rich enough to distinguish any pair of

states �; �0 2 � (td) such that either w1� (a0) 6= w1�0 (a0) or w2� (a0) 6= w2�0 (a0) :

Suppose, however, that tests relevant to the e�ects of default on the welfare of party 1 (the

defaulting party) are ambiguous.

In this case, we may, consider the case of a contract with damages dependent on losses to party

2. For any � 2 Z, let us suppose there exists a test t� 2 T that is satis�ed if and only if default

occurs, and the associated loss is �, that is, on the event � (t�) = � (td) \
�
� : w2� (a0) = �

	
. The

members of the set of events f� (t�) : � 2 Zg [ f� (:td)g, are mutually exclusive and exhaustive,

and therefore constitute a partition of the state space. A loss-dependent damages contract c�,

7 Note that we can restrict ourselves to a �nite set of loss values, rather than specifying the loss as a real number.
This treatment is both more realistic (it is hard to de�ne an irrational number of dollars) and, given our setup,
more tractable.
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restricted to be measurable with respect to this partition satis�es:

fc� (�) 2 Â�AM � 2 � (:td)

fc� (�) = (a0; g (�)) � 2 � (t�)
,

where g : Z ! AM is a function relating the loss borne by party 2 to the associated damages

payment from party 1. Note that we do not require g (�) = �. That is, the damages payment from

party 1 to party 2 need not be equal to the loss incurred by party 2. Depending on the risk-sharing

properties of the contract and on the state-dependent preferences of party 1, the damages payment

to party 2, g (�), may be less than, equal to or greater than the loss � incurred by party 2.8

The tests t� may still be ambiguous. For example, the parties may disagree over what items

should be counted as losses arising from default and how they should be valued. Thus, such

contracts are likely to, and regularly do, produce disputes.

If losses are ambiguous, and dispute costs are high, parties may prefer a liquidated damages

contract, with a speci�ed payment m̂. The required test set is then the minimal set T = ftdg and

a liquidated damages contract c�� specifying payment m̂ satis�es

fc�� (�) 2 Â�AM � 2 � (:td)

fc�� (�) = (a0; am̂) � 2 � (td)

That is, either the contract applicable in the absence of default is implemented or party 2 pays

the liquidated damage sum m̂. As long as the test td is unambiguous, so is the liquidated damages

contract.

8 Concluding comments

We have provided a formal model for incorporating ambiguity into decision making. The ambiguity

in our model arises from the bounded rationality of the players which is expressed as limited

abilities to perform tests over the possible contingencies. This limitation results in each player

having a limited individual description of the world.

8 In general, risk-sharing would imply that the damages payment should be less than the loss. In the model
presented here, losses are force majeure not discretionary, so there is no incentive-based reason for exemplary or
punitive damages. However, consideration of the state-contingent preferences of party 1 suggests instances where
risk-sharing may imply a payment larger than the loss. Suppose that high-losses to party 2 occur when the good
is in high demand and subject to constrained supply. Then party 1, having defaulted as a result of inability to
supply on time may be able to sell the good at a high price and therefore (involuntarily) bene�t from default.
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Contracting was restricted in this context to the types of test based contingent plans described

in Blume et al. (2006). In this context we were able to show how ambiguity can a�ect incentives

for risk sharing, and the desirability of contracts.

The representation of ambiguity proposed here suggests new approaches to a range of issues in

contract theory. Some of these issues have proved di�cult to address using approaches based on

unbounded rationality, or on arbitrary constraints on rationality. In the case of risk sharing, we

have shown that ambiguity may lead players to prefer incomplete risk sharing to possibly ambigu-

ous contracts. In the application of liquidated damages we saw that the presence of ambiguity

about the damages su�ered by the party injured by default can lead to a contract that stipulates

a simple penalty payment to be made in the event one party unilaterally defaults on performance.

The analysis of liquidated damages suggests the possibility of broader applications in agency

theory. The standard principal-agent problem is one where contracting is limited to some observ-

able unambiguous characteristics like output, rather than a full set of characteristics including

e�ort levels which may be ambiguous. The framework developed here suggests the possibility

of an endogenous choice between contracts over di�erent characteristics, where the choice of the

contractual variables chosen depends on the level of ambiguity and potential gains from risk shar-

ing. While this application would require overcoming some new technical details involving the

appropriate treatment of tests, the bene�t would be the development of a theory of contracting

in which the terms of the contract, over which the parties actually bargain, plays the central role.
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