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ABSTRACT 

Production functions that take into account uncertainty can be empirically estimated 

by taking a state contingent view of the world. Where there is no a priori information 

to allocate data amongst a small number of states, the estimation may be carried out 

with finite mixtures model. The complexity of the estimation almost guarantees a 

large number of local maxima for the likelihood function. However, it is shown, with 

examples, that a variation on the traditional method of finding starting values 

substantially improves the estimation results. One of the major benefits of the 

proposed method is the reliable estimation of a decision maker’s ability to substitute 

output between states, justifying a preference for the state contingent approach over 

the use of a stochastic production function.  

 

Keywords: 

Production function; econometrics; starting values; state contingent production. 

 

Abbreviations: 

EM=Expectation Maximisation; P=Probability; LL=Log likelihood;  

 

1. INTRODUCTION 

 

Production functions are used in the analysis of the relationship between agricultural 

inputs and outputs. The estimation of production functions are somewhat complicated 

by factors such as the poor availability of data, the existence of inefficiency and the 

existence of a risky operating environment. In the case of inefficiency, a production 

frontier may be estimated assuming that deviation from this frontier are partly random 

error and partly due to inefficiency. A common example of this is the stochastic 

production frontier developed by Aigner, Lovell and Schmidt (1977) and Meeusen 

and van der Broeck (1977) which simultaneously estimates the efficiency of 

individual firms in the sample. 

 

Chambers and Quiggin (2000) provide a substantial critique of the stochastic 

production function (and frontier) because it does not appropriately take into account 

price or production uncertainty. They envisage a world where producers face many 

possible states of nature, where a state of nature is associated with particular levels of 
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production and prices. Their critique is based on the notion that a stochastic 

production frontier is estimated while implicitly assuming only one state of nature 

could occur, and so deviations are either random or due to inefficiency. This ignores 

the possibility that deviations from this frontier are potentially deliberate as a response 

to the set of possible states that may have occurred ex ante. In other words, a producer 

could rationally decide to produce less than another producer in the state that is 

observed ex post because they committed inputs to achieve higher production in a 

different state ex ante. Hence they appear inefficient, having produced less than 

another producer for the observed state when it may be a result of rational decisions. 

This notion is shown with examples by O’Donnell et al. (2006). 

 

Although Chambers and Quiggin (2000) provide reasons for approaching production 

function and production frontier estimation from the state contingent framework, 

empirical estimation in this framework is currently very limited. One example is 

O’Donnell and Griffiths (2006) which uses a latent class or finite mixtures model in a 

Bayesian approach to estimate efficiency of Phillipine rice farmers. O’Donnell (2006) 

provides another example of estimating latent class models to approximate an 

‘unknown’ production function from simulated data. This estimation procedure 

requires the maximisation of a complex likelihood function and is described in more 

detail in a following section. Due to this complexity, it is likely that there are a 

number of local maxima in the likelihood function and as a response the Expectation 

Maximisation (EM) method is employed. However, the starting point of the process 

may still affect the estimates of important economic parameters such as conditional 

means and marginal products. 

 

Starting points in econometric procedures have been researched in various contexts. 

For example, Tonsor and Kastens (2006) examine the impact of starting points on the 

estimates of meat demand models. They find that as the econometric task becomes 

increasingly nonlinear, starting conditions become increasingly important. Bond et al. 

(2005) examine the impact of changes in initial parameter estimates in the context of a 

nonlinear optimisation for Phillips curve estimation. They find that the results are 

highly sensitive to the data set and algorithm choice and suggest the existence of local 

maxima as a reason. St Pierre (1998) found that the EGARCH-M model is sensitive to 
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the choice of starting values, particularly on computers with a high degree of 

precision.  

 

The purposes of this paper are four-fold. First, it aims to demonstrate the effect of 

different starting points for latent class estimation when using the EM algorithm. 

Second, it proposes a method that improves the chances of finding a high value for the 

likelihood function. Third, it demonstrates how checking the impact of starting points 

can be done quickly by using a computing grid. Fourthly, it outlines difficulties in a 

potential application of estimating state contingent production frontiers using latent 

class models. 

 

2. LATENT CLASS ESTIMATION 

The concept of latent class estimation is briefly outlined below in raletion to 

estimating production functions, but described in detail by McLachlan and Peel 

(2000) for a range of applications. As an example, a linear equation could be used to 

estimate a production function: 

imimi ezy += β     (1) 

where yi is the ith output, zi is the matrix of i observations on m inputs, βm is the vector 

of m coefficients, and ei is the error term. This equation implies that the same 

relationship applies to all observations. However, it might be possible that there are 

several different underlying relationships. In this case, it may be known ex ante which 

data observations apply to each relationship. For example, if the data observations 

could be split into j groups (or classes), and a separate relationship was to be 

estimated for each group, equation 1 could be estimated j times using the subsets of 

the data in separate estimations. Alternatively, one equation could be estimated: 

iijmjikji etzy += ].*.['1 β    (2) 

where βmj is the matrix of m coefficients by j classes, tij is a matrix of i observations 

by j classes in which tij=1 if observation i belongs to class j and zero otherwise, .*. is 

the operator representing element by element (or Hadamard) multiplication and 1j is a 

vector of ones of length j. 

 

If there is no information available ex ante regarding which class the data 

observations belong to (ie tij is unknown), a latent class model can be used to 
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simultaneously estimate the probability of a data point belonging to a class and the 

coefficients associated with each class. 

 

The latent class model can be estimated by maximum likelihood methods, and the log 

likelihood calculation is: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

==

),,|()( 2

11
σβπ mjiij

J

j

N

i
zypLnLLn    (3) 

where πj is the unobserved prior probability of random variable yi belonging to the jth 

class. While direct maximisation of the likelihood function is possible, in practise it is 

difficult. This is because the likelihood function is not usually concave, having 

multiple local maxima, and the large number of parameters may make standard 

algorithms unreliable (O’Donnell, 2006). An alternative approach is to use the EM 

algorithm of Dempster, Laird and Rubin (1977), which is discussed in more detail in 

the next section. 

 

3. EM ALGORITHM 

The EM algorithm works by looping iteratively through an expectation step and a 

maximisation step until some stopping criterion is met. The expectation step is based 

on the expectation of the LL (conditional on the data), which assuming that πj and θj 

are known, is expressed as: 
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where τij is the posterior probability of random variable yi belonging to the jth class, 

and θj is the matrix of parameters for the model, including βmj and σ2. An estimate for 

τij can be found as: 
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where the superscript k represents the estimates at the kth iteration of the EM 

algorithm. Thus an estimate of equation 4 (for the kth step of the algorithm) can be 

given by: 
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The maximisation step involves maximising equation 6 with respect to πj and θj in 

order to calculate updated values for these variables. To update the estimate for πj: 
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To update the estimate for θj requires a further maximisation of: 
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with respect to θj
(k). 

 

The starting point for the EM algorithm can influence the results in important ways 

such as affecting coefficient estimates and the outcomes of likelihood ratio tests (eg 

Seidel, Mosler and Alker, 2000). One of the most common approaches to a starting 

point depends on specifying initial values for τij, where each of the N data 

observations is initially allocated to one of the J classes (ie τij=1 if observation i 

belongs to class j and zero otherwise).  

 

McLachlan and Peel (2000) suggest eight methods in which this initial allocation can 

be done, or alterations can be made to the EM algorithm to assist recovery from a 

poor starting point. First, an ad hoc method is to plot two dimensions of the data and 

divide the bivariate plot into two groups. Second, a clustering algorithm or third, a 

hierarchical procedure could be used to initially group the data. Fourth, an allocation 

can be based on based on random sampling, assuming that each data observation 

belongs to the jth class with equal probability. Fifth, a subsample of the data is 

assigned randomly to the J components (as for the previous method), and the initial 

M-step is performed on the subsample. Sixth, for univariate mixtures, the initial 

mixing proportions can be determined from a quantile-quantile plot, with random 

assignment based on these probabilities. Seventh, a deterministic annealing EM 

algorithm, employing the concept of maximum entropy, can assist in recovery from a 

poor starting point. Finally, a stochastic EM algorithm may be used to escape 

convergence paths from poor starting points as it randomly assigns each observation 

outright to one of the classes at every E-step. 
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McLachlan and Peel (2000) make several points about the usefulness of the different 

methods. The allocation based on random sampling (equal probability for each class) 

can lead to the component parameters being similar, which may in turn lead to a 

suboptimal estimation result. They propose the subsample approach as a potential 

improvement, with simulation results about the frequency of finding local maxima of 

the LL function (Figure 1). They conclude that the latter approach found a wider 

range of local maxima, but also believe some additional local maxima correspond to 

spurious local maxima. A spurious local maximum is one where a class has a very 

low (but nonzero) variance or generalised variance as a result of only containing a few 

data points lying close together (or in a lower dimensional subspace). 

 
Figure 1: Frequencies of the different local maxima found based on a random 
assignment into g groups using (a) all the data and (b) a subsample of the data 

 
Source: McLachlan and Peel (2000) 

 
McLachlan and Peel (2000) also suggest that the two methods of altering the EM 

algorithm either have a tendency to find spurious maximisers or that their ability to 

find improved optima can be achieved more simply by running the standard EM 

algorithm from a few different starting points. Other methods such as the ad hoc and 

quantile-quantile method may not be appropriate for higher dimensional data or 

models with larger numbers of classes.  
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Karlis and Xedelaki (2003) test a number of different methods for assigning starting 

points with simple experiments with finite mixtures of normal distributions and then 

finite mixtures of Poisson distributions. Their general results confirm earlier work that 

suggests it is preferable to start from several different starting points. Two of the more 

successful methods they tested were a variation on the method of Finch et al. (1989) 

and a “best of ten” strategy. The Finch method was designed for two-component 

normal mixtures and estimates the mixing proportions before assigning pj*N 

observations to each class J in a sequential manner. The best of ten method calculates 

the LL value at the first iteration for 10 starting points and uses the starting point that 

generates the highest LL value.  

 

The set of all possible starting points is quite large. As explained previously, the 

starting point (τij(0)) can be specified by an initial allocation of each observation to one 

of the j classes. This means there are theoretically jN possible starting points. As an 

example, with 200 observations across three classes, there would be 3200 (ie 2*1095) 

possible starting points, far more than could ever be enumerated. Starting points as a 

mixed allocation could also be considered. For a mixed allocation, an observation is 

not allocated outright to one class, but with some probability to each class. If, instead 

of starting points with outright allocations, mixed allocations were also considered, 

the potential starting points are much larger, and are only finite if probabilities are 

measured to some limited precision.  

 

The manner in which the allocation takes place makes a large impact on the types of 

starting points that are selected. Two methods of allocation are explored in this paper. 

The method of allocation whereby each data observation belongs to the jth class with 

equal probability will be referred to as the original method. A new method, where the 

probability of belonging to each class is determined before allocating observations 

based on those probabilities will be referred to as the proposed method. To illustrate 

the differences between these methods in establishing a starting point, 100 starting 

points were generated for each method, assuming 200 data observations and 3 classes. 

Figure 2 is a histogram outlining the distribution of the maximum and minimum 

probability for each method. The figure shows that the original method generates 

most starting points with minimum probabilities in the range of 0.23 and 0.33, and 

maximum probabilities in the range 0.33 to 0.45. In contrast, the proposed method 
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generated minimum probabilities from zero to 0.33, and maximum probabilities from 

0.33 to one. In other words, the proposed method is likely to generate a wider range of 

possible starting points. This wider range of starting points is likely to be of benefit if 

different starting points lead to convergence at different (potentially suboptimal) LL 

maxima. 

 

Figure 2: Distribution of initial probabilities: Original and proposed methods 
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One potential problem with the proposed method is that it can generate an initial 

allocation of data points to a class that is too small to generate the parameter estimates 

for the equations of that class. In this case, a singular covariance matrix can occur, 

and no model can be estimated. Another potential problem with the proposed method 

is that it could lead to spurious maximisers. This could be identified with classes that 

have a low minimum probability (ie there are few data points in the class) and there is 

a suspiciously low standard error for the class (relative to the standard error for other 

classes). 
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4. AN EXAMPLE 

An example of the latent class estimation process was carried out on simulated data 

generated by O’Donnell (2006). The simulated data was based on the two input 

production function proposed by White (1980) shown in equation x. 

 

( )ii zz
i eey 2111 .

1
.

1

ln1 γγ γ
γ

−− +−=    (9) 

where yi represents the ith observation of the log of output and zki represents the ith 

observation of the log of the kth input. The number of inputs k was set at two and the 

parameters of the production function, γ1 and γ2, were set to 5 and 2 respectively. The 

production surface of the two-input production function is shown in figure 3. 

 

Figure 3: Two-input production function: Production surface 
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The first observation on the log of output (y1) was generated assuming that the log of 

inputs (z1 and z2) were equal to 0.5.  A further 199 observations on log output were 

obtained by drawing values for the log of inputs z1 and z2 from a uniform distribution 

between zero and one. This data represented observations without noise. A noise 

component (ei~N(0, 0.01)) was added to these observations assuming to produce a 
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data set that included noise. The data including the noise component is plotted in 

figure 4. 

 

Figure 4: Simulated (noisy) data from the two-input production function 

 
The latent class estimation was used to estimate the true functional form as if it was 

unknown, as per O’Donnell (2006). Three classes were assumed with each class being 

a translog functional form. The EM algorithm was used as described in the previous 

section. The starting points were generated by the original method of initially 

assigning data observations to a class randomly, and the proposed method of 

determining initial probabilities before assigning data observations to each class based 

on these initial probabilities. The former method implicitly assumes initial 

probabilities near 1/3 for large samples, while the latter method makes no such 

assumption.  

 

The stopping criterion for the EM algorithm was based on an Aitken acceleration-

based stopping criterion (as proposed by McLachlan and Peel (2000)) where the 

tolerance was set to 1*10-11. However, the econometric software used (Shazam) may 

be limited by the precision of floating point numbers, and so the actual tolerance 

could be closer to 1*10-5. The analysis generated 60,000 starting points for each of the 

four cases: Original method on data without noise, proposed method on data without 
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noise, original method on data including noise, and proposed method on data 

including noise.  

 

4. RESULTS 

Results are presented in two parts. First, for the estimation of a latent class model on 

the data that does not have a noise component, and second, on the data that does 

include the noise component. 

 

Data without noise 

The EM algorithm converged at a number of different estimates for model 

parameters, regardless of whether the original or proposed method was used. The EM 

algorithm frequently converged at local optima for the likelihood function, regardless 

of the method for assigning a starting point, as shown in Figure 5. Both methods 

generated the same mode for the converged log likelihood function, accounting for 

28% and 61% of the starting points from the proposed and original methods 

respectively. However, the proposed method found a higher value for the log of the 

likelihood function and converged at optima higher than the mode more frequently 

that the original method.  

 

Figure 5: Local optima for data without noise: Original method and proposed method 
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Following O’Donnell (2006), the results from the estimation process were used to 

estimate the conditional mean m(z), marginal product of input 1 m1(z) and marginal 

product of input 2 m2(z) for the unknown function at observation one (input means) 

and observation 49. Table 1 presents these estimates from the most frequently found 

optimum, the best found by the original method and the best overall log likelihood 

value. Partly due to the lack of noise in the data, the standard errors are very low. All 

estimates are significantly different (P<0.05) from the true values, with the proposed 

method having the lowest bias for estimating the marginal products at both data 

points. The conditional mean is best estimated (lowest bias) by the original method at 

data point 1, but the most frequently found optimum has the lowest at data point 49. 

Importantly, the estimates of the economic quantities are all statistically different 

from each other (P<0.05). 

 

Table 1: Estimates of economic quantities at various local optima for data without 

noise 

 Evaluated at z1 = (0.5,0.5) 

 
m(z1) 

True value = 0.280 
m1(z1) 

True value = 0.333 
m2(z1) 

True value = 0.667 

 
Most 

frequent 

Highest- 
original 
method 

Highest 
overall 

Most 
frequent 

Highest- 
original 
method 

Highest 
overall 

Most 
frequent 

Highest-  
original 
method 

Highest 
overall 

Estimate 0.266 0.285 0.298 0.364 0.297 0.327 0.630 0.706 0.673 
Standard 
Error 

0.0001 0.0001 0.0001 0.0003 0.0002 0.0001 0.0003 0.0002 0.0001 

Bias -0.0141 0.0046 0.0179 0.0309 -0.0359 -0.0066 -0.0365 0.0393 0.0059 
RMSE 0.0141 0.0047 0.0179 0.0309 0.0359 0.0066 0.0365 0.0393 0.0059 

 
 

Evaluated at z49 = (0.05,0.03) 

 
m(z49) 

True value = -0.184 
m1(z49) 

True value = 0.308 
m2(z49) 

True value = 0.692 

 
Most 

frequent 

Highest-
original 
method 

Highest 
overall 

Most 
frequent 

Highest- 
original 
method 

Highest 
overall 

Most 
frequent 

Highest- 
original 
method 

Highest 
overall 

Estimate -0.183 -0.177 -0.166 0.313 0.266 0.311 0.632 0.716 0.690 
Standard 
Error 

0.0003 0.0002 0.0001 0.0010 0.0006 0.0003 0.0011 0.0006 0.0004 

Bias 0.0006 0.0071 0.0178 0.0051 -0.0413 0.0032 -0.0602 0.0236 -0.0023 
RMSE 0.0007 0.0071 0.0178 0.0052 0.0413 0.0032 0.0603 0.0236 0.0023 
 

Using the original method, the frequency of convergence at each LL value is shown in 

figure 6 together with the standard error as well as the maximum and minimum 

probability of an observation being within each class. The standard error can be seen 

to decline fairly steadily with higher values of the LL function, but the maximum and 
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minimum probability do not vary systematically with the increases in the LL value. 

The observation that the minimum probability does not fall far below 0.10 suggests 

that few of the local maximisers are spurious. This tends is confirmed by reference to 

the standard error of each class which are of a similar magnitude. 

 

Figure 6: Original method on data without noise: Log likelihood frequency, standard 

error, maximum and minimum probability of local optima. 
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Using the proposed method, the frequency of convergence at each LL value is shown 

in figure 7 together with the standard error as well as the maximum and minimum 

probability of an observation being within each class. Comparing figure 6 with figure 

7 shows that using the proposed method generates much more discrete local optima. 

Similarities in figure 7 with figure 6 include the tendency for a reduction in the 

standard error as the LL value increases and no obvious relationship between the 

probability and the LL value. There are some local maximisers that are likely to be 

spurious, as shown by the low minimum probabilities, but the local maximisers with 

the LL values higher than the mode do not appear to be spurious based on the 

criterion of low minimum probabilities. The maximum overall likelihood value was 

not associated with a suspiciously low minimum probability (0.1099), and the 

standard error for that class was similar to the standard errors for the other classes. 
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Furthermore, the original method had a lower minimum probability (0.0813) and a 

wider range between the class standard errors. 

 

Figure 7: Proposed method on data without noise: Log likelihood frequency, standard 

error, maximum and minimum probability of local optima. 
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As the proposed method generated starting points that had classes with a low number 

of data points (due to a low minimum probability), it was more likely to fail due to 

encountering a singular covariance matrix, either in the first or subsequent iterations. 

This failure occurred using 6% of the starting points generated by the proposed 

method, and for none of the starting points generated by the original method. 

 

In summary, using data without noise, the proposed method provided higher LL 

values, and it did not appear that the higher LL value was a spurious maximiser. This 

lead to lower bias in estimating the marginal products (measured at two points) but 

not for the conditional mean. The estimates provided by the most frequent local 

optimum, the highest LL optimum under the original method and the highest LL 

optimum under the proposed method were all significantly different from each other.  
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Data including noise 

Similarly to when the data did not include noise, both the original or proposed method 

resulted in the EM algorithm converging at a number of different estimates for model 

parameters when the data included a noise component. The EM algorithm frequently 

converged at local optima for the likelihood function, regardless of the method for 

assigning a starting point, as shown in Figure 8. Both methods generated the same 

mode for the converged log likelihood function, accounting for 41% and 90% of the 

starting points from the proposed and original methods respectively. However, the 

proposed method found a higher value for the log of the likelihood function and 

usually converged at optima higher than the mode more frequently that the original 

method. The proposed method also converged at many discrete sub optima, some of 

which had much lower LL values than the lowest from the original method. 

 

Figure 8: Local optima for noisy data: Original method and proposed method 
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From the additional local maxima associated with the proposed method, it is 

important to consider whether these would be spurious local maximisers. The figures 

A1 and A2 in appendix A show the local optima from figure 8 with the respective 

maximum and minimum probabilities. Both methods may have spurious maximisers, 

evidenced by quite low minimum probabilities (for a minority of the local 



Version: January 26 

Page 18 of 31 

maximisers). Despite this, the overall LL maximum (found with the proposed 

method) was not likely to be a spurious maximiser, having a minimum probability of 

0.1997 and standard errors for each class that were of a similar size. 

 

Table 2 shows that there is a large improvement in the LL value by moving from the 

most frequently found optimum to the highest optimum using the original method, 

with a smaller incremental improvement when moving from the latter optimum to the 

highest found with the proposed method. A similar effect is seen with the reduction in 

standard error. The probabilities change by 5 to 10% when moving from the most 

frequently found optimum to the highest optimum from the original method, with 

only a small difference between these latter probabilities and those found by the 

proposed method. An interesting observation was that the highest optimum found by 

the original method was found from only 0.02% of the starting points using that 

method, but was found by 11% of the starting points from the proposed method. 

 

Table 2: Comparing optima on noisy data: Most frequently found, highest by original 

method and highest overall. 

 
Most 

frequent  
Highest by 

original method 
Highest overall 

(proposed method) 
Log likelihood value 184.75 186.43 186.77 
Frequency: Proposed 41.05% 11.15% 0.26% 
Frequency: Original 90.11% 0.02% n/a 
Standard error (*10-3) 5.00 3.97 3.70 
Min(Pi) 0.2859 0.1997 0.1977 
Max(Pi) 0.3856 0.4312 0.4236 

 

Figure 9 shows the maximum and minimum probabilities for each class at the starting 

point for both the original and proposed method within the feasible area of probability 

combinations.1 This demonstrates that the proposed method considers a wider set of 

starting points. The figure also shows that the most frequently found optimum is 

within the range considered by the original method, but the global optimum (or at 

least the highest LL value found2) is not within the range of starting points considered 

                                                 
1 The initial random probabilities are determined by a random uniform function in Shazam that 
operates at a discrete step of 0.005. In other words, each starting probability is some multiple of 0.005. 
Only those probability combinations that lead to model estimates are shown. 
2 The proposed method was run for a further 150,000 starting points and no higher LL values were 
found. 
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by the original method. This may be a potential reason why the global optimum is not 

found by the original method. 

 

Figure 9: Initial maximum and minimum probabilities: Original method and proposed 

method. 
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As explained previously, the proposed method was more likely to fail to estimate a 

model due to encountering a singular covariance matrix, either in the first or 

subsequent iterations. This occurred using almost 7% of the starting points generated 

by the proposed method, but almost none of the starting points generated by the 

original method. 

 

Table 3 presents estimates of the conditional mean m(z), marginal product of input 1 

m1(z) and marginal product of input 2 m2(z) for the model resulting from the most 

frequently found optimum, the highest LL model by the original method and the 

highest overall log likelihood value. Estimates are significantly different from the true 

values for the marginal products at data point 1, but the conditional means are not 
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significantly different from the true value at this data point. The LL optimum that 

generates the lowest bias varies between each economic quantity at this data point. At 

data point 49, no estimates are statistically different from their true values, with the 

optimum under the original method having the lowest bias.  

 

Table 3: Estimates of economic quantities at various local optima for noisy data 

 Evaluated at z = (0.5,0.5) 

 
m(z1) 

True value = 0.280 
m1(z1) 

True value = 0.333 
m2(z1) 

True value = 0.667 

 
Most 

frequent 

Highest- 
original 
method 

Highest 
overall 

Most 
frequent 

Highest- 
original 
method 

Highest 
overall 

Most 
frequent 

Highest-  
original 
method 

Highest 
overall 

Estimate 0.278 0.282 0.279 0.401 0.393 0.395 0.587 0.583 0.586 
Standard 
Error 

0.006 0.005 0.005 0.010 0.009 0.009 0.011 0.010 0.010 

Bias -0.002 0.001 -0.001 0.068 0.060 0.061 -0.079 -0.084 -0.081 
RMSE 0.006 0.005 0.005 0.069 0.061 0.062 0.080 0.084 0.082 

 
 

Evaluated at z = (0.05,0.03) 

 
m(z49) 

True value = -0.184 
m1(z49) 

True value = 0.308 
m2(z49) 

True value = 0.692 

 
Most 

frequent 

Highest-
original 
method 

Highest 
overall 

Most 
frequent 

Highest- 
original 
method 

Highest 
overall 

Most 
frequent 

Highest- 
original 
method 

Highest 
overall 

Estimate -0.170 -0.172 -0.168 0.325 0.307 0.289 0.623 0.675 0.659 
Standard 
Error 

0.012 0.011 0.010 0.038 0.035 0.034 0.043 0.039 0.038 

Bias 0.014 0.012 0.016 0.017 -0.001 -0.019 -0.069 -0.018 -0.033 
RMSE 0.018 0.016 0.019 0.042 0.035 0.039 0.081 0.043 0.050 
 

Figure 10 shows the true values of the economic quantities at data point 1 together 

with the econometric estimates plus or minus two standard errors. While the estimates 

are statistically different from the true values, the estimates are not statistically 

different from each other, at least for this data point (P<0.05). At data point 49, the 

estimates were not statistically different from the true values, and were also not 

statistically different from each other (P<0.05). 
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Figure 10: True values of economic quantities compared to their estimates at 

z=(0.5,0.5) 
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In summary, the proposed method performed better at finding higher LL values with 

noisy data, as it did for data without noise. However, the bias was not consistently 

lower for the proposed method. Furthermore, there was not a significant difference 

between the estimates from the most frequently found optimum, or the highest LL 

value model by the proposed or original methods. This suggests that in some cases, 

such as where there is significant noise in the data, finding a local rather than global 

optimum may not affect the estimates of interest. 
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5. PARALLEL ECONOMETRIC COMPUTATION 

Estimation of a latent class model is a relatively fast operation, taking only a matter of 

seconds with software such as Shazam. Repeating the estimation a large number of 

times (for example, tens of thousands) using different starting points can easily take 

days or weeks of computation on a single computer. Parallelisation of this process 

across multiple computers can reduce the delay in receiving the results almost linearly 

with respect to increases in computing power. 

 

Many universities and research groups have access to a supercomputing facility for 

procedures that are computation intensive. These supercomputers are usually 

available for periods of time, but may incur a fee for use. The main features of a 

supercomputer include not only a large number of processors, but a fast connection 

between processors to allow dependent calculations to receive results quickly. These 

supercomputers may not be necessary or appropriate for econometricians for two 

main reasons. First, econometric problems such as many sampling procedures and 

simulations are not dependent on other calculations (referred to as “embarrassingly 

parallel”) and do not require the fast connection between processors. Second, 

supercomputing facilities frequently use a Linux or Unix operating system which may 

not run econometric software designed only for the Windows operating system. If 

these conditions hold, it may be appropriate for the econometrician to use a grid of 

heterogeneous computers. 

 

The most commonly known examples of parallelising computation across a grid of 

heterogeneous computer resources are the SETI@Home project and the 

Folding@Home project.3 Both projects involve volunteer users downloading software 

and data to process when the computer processor is idle and reporting results to an 

internet-based server. 

  

To generate the results discussed in the previous section as quickly as possible, a 

small heterogeneous grid of five Microsoft Windows-based computers was employed. 

The grid was connected across the universities intranet and was arranged in a master-

slave framework, which is where one computer (the master) controls the procedure 
                                                 
3 The SETI@Home project analyses electromagnetic data from space for signs of intelligent life and 
the Folding@Home project analyses the way proteins fold in order to understand diseases. 
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and requests the other computers (slaves) to carry out calculations and return the 

results.4 Each slave was requested to estimate one model (after generating a starting 

point) and report the results to the master together with information defining the 

starting point, after which it could be assigned to estimate another model with a 

different starting point. The computational task from the previous section would 

originally have taken several weeks on a single computer, but was completed in a few 

days using the grid framework.  

 

The grid was managed by the enFuzion software (TurboLinux, 2000). enFuzion 

allows a grid procedure to be organised through a GUI using a minimum of scripting 

compared to more traditional grid software and works across Windows and Unix 

operating systems.5 Shazam was relatively straightforward econometric software to 

use within this framework because it could be operated entirely with command line 

instructions (ie it did not require input via the GUI during the estimation procedure). 

Alternative technical software products such as GAMS (Brooke et al., 2005), Gauss 

(Aptech, 2005) and Mathematica (Wolfram, 2006) also have this capability and could 

be used in a similar way.6  

 

An important factor to consider in a large computational task is whether the grid 

process is fault tolerant. Within the enFuzion software, if a computer becomes 

unavailable (for example due to hardware or software failure), the task will either be 

reported at the end of the process or run again on another machine (depending on the 

initial setup). Fault tolerance is enhanced enFuzion’s ability to record which jobs have 

been done by the master, allowing the procedure to recommence from a checkpoint 

should there be a temporary failure in the master computer (eg due to a power 

outage). It can also be helpful to use a laptop as the master as it has its own temporary 

battery backup.  

 

An important factor that makes the grid very practical is the flexibility with which 

different computers in the grid can be used. For example, any computers that are on 

                                                 
4 In this example, the master also operated as a slave. 
5 Alternative grid software for the Microsoft Windows operating system is available (eg Digipede, 
www.digipede.net). 
6 GAMS, Gauss and Mathematica may have benefits in terms of precision (relative to Shazam) but 
their multiple computer or site licenses are far more expensive. 
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the same network or connected to the internet can feasibly be used. This allows the 

grid to take advantage of computers within the same room, within the same research 

group or even computer labs. These resources can be set up so that being part of the 

grid does not affect other users who may use the computers. For example, a network 

may be set up to utilise only idle computers. Idle computers may be defined as 

computers that are on, but no user is logged, or extended to include computers where 

the user is logged in, but the processor is not heavily used. In the former case, if a user 

logs into one of the slave computers, it automatically halts any calculations. In the 

latter case, the priority of the grid process can be set low so that the user would not 

normally notice any degradation in performance.  

 

The results from the estimation of each model were saved as separate text files. These 

were then stored on the master computer and backed up at regular intervals to an 

external hard drive, improving the fault tolerance of the procedure7. The output in 

each separate text file could have been added to a file as part of the grid procedure, 

but was instead merged into a summary files by use of Perl scripting, made available 

through ACCS. Similar procedures could have been done without scripting using 

GUI-based software such as Textpipe (DataMystic, 2006).  

 

To ensure that the available processing power is used effectively, it is helpful to 

ensure that the communication network can handle the expected communication 

traffic. In the example, the communication between the master and slave consisted of 

relatively small text files every few seconds, well within the network’s capability.  

 

In summary, grid procedures can provide a fault-tolerant approach to quickly 

obtaining results from processes involving heavy computation loads. Grid techniques 

can make it more feasible to do complex computations and reduce the time required to 

check a multitude of starting points. Critical success factors for the use of a grid 

include access to computers, grid software, and econometric software licensed for the 

grid that can be run from a command line. It is helpful to have scripting experience. 

                                                 
7 Carrying out periodic backup of files in a particular directory is easily managed through the 
“scheduled tasks” option in Windows XP. Windows XP can manage tens of thousands of files in a 
single directory, although depending on the storage device, it may be slow to read and take up 
significantly larger space on the device than indicated by the file size. This problem can be reduced by 
compressing files either as part of the grid procedure or in the backup process. 
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Most econometricians already have this experience from writing their own 

econometric procedures within software such as Shazam or Gauss. It is also helpful to 

have a computer technician available when setting up a grid. This is particularly the 

case if there is not easy access to the computers and communication is to be made 

through very secure firewalls. 

 

6. APPLICATIONS 

Estimating state contingent production functions through the application of 

econometric techniques (such as latent class models) is problematic for several 

reasons. These include the data requirements, appropriately defining states, and 

ensuring production functions consistent with theory. 

 

Data requirements are an issue as a large amount may be required to establish a 

deterministic production function for every state of nature. This becomes more 

problematic as higher numbers of states and more factors of production are 

considered. Theoretically, one needs to know not only how much of the inputs are 

selected, but to which states they will affect. Latent class models can ease the data 

burden somewhat by using the data to determine some of these effects. 

 

Identifying states can be problematic. For example, data may be sampled across firms 

at the same period in time, but within each period all firms are not facing the same 

state. For example, rainfall could differ between farms, even within the same area. 

Latent class models such as those presented by O’Donnell (2006) can be appropriate 

when there is no information about which data observations relate to a particular 

class. However, when there is information that could be used to partially determine 

the class, a Bayesian framework (ie with priors) may be preferred to a frequentist 

framework.  

 

Identifying the number of states is a controversial issue, given that there could be an 

infinite number of possible states. Rather than identifying a large number of states to 

represent all possible states, Rasmussen (2004) suggested that the problem can be 

tackled by considering states that represent variability in some (relatively important) 

factors, but with each state having a stochastic production function to allow for 

variability in other factors. As an example, O’Donnell et al. (2005) presented an 
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application of the state contingent approach using stochastic production frontiers with 

finite mixture estimation of the states for rice farming in the Philippines. It was 

assumed that there were three possible states that could occur, but more generally 

statistical tests such as the Akaike Information Criterion or the Bayesian Information 

Criterion may be helpful in determining whether the number of states is appropriate 

for the data.  

 

Testing the appropriateness of certain specifications for production technology can be 

problematic. For example, the method of O’Donnell et al. (2005) is not flexible 

enough to statistically test the nature of the state substitution – ie is the technology 

output cubical or not? Chavas (2006) used a different approach with US agricultural 

data to test whether the level of state substitution was significant and concluded it was 

not. This result suggests that in some contexts, modelling the state contingent 

production function to allow for non-output cubical technologies may not be 

important. 

 

Determining an appropriate model of state contingent production may not be solely a 

question of whether the model was found to have the highest (non-spurious) LL 

maximum. This is because the production function for each state still should maintain 

reasonable economic properties. For example, returns to scale and marginal products 

should be lie within reasonable bounds for each state. This may be approached 

through a Bayesian framework (incorporating priors) or restrictions (O’Donnell, 

2006). For the latent class model estimated in an earlier section using noisy data, the 

estimated models for the three classes are shown in figure 11. If it were a production 

function that was estimated for three states, the model implies that the marginal 

product of one of the inputs is negative for a significant region of feasible inputs in 

two states8. If this was not considered to be realistic, the incorporation of Bayesian 

priors or other restrictions may be required.  

 

                                                 
8 It can be seen in figure 3 that the original production function used to generate the data observations 
did not have negative marginal products at any part of the production surface. 
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Figure 11: Estimated production function for three classes 
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7. CONCLUSIONS 

It was demonstrated that different methods for choosing starting points in the 

estimation of a latent class model would result in different optima being found. It was 

shown that the single most common optimum found in a large proportion of starting 

points (up to 90%) was not the highest possible LL value.  

 

A method was proposed that determined the probability of each observation 

belonging to a class before assigning each data point to a class, which differed from 

the accepted (original) method that implicitly assumed a probability of 1/j for a data 

point belonging to each of j classes. In an example, whether using data with or 

without noise, the proposed method found higher LL values than the original method. 

These maximum LL values were not likely to be spurious maximisers, as they did not 

match the criterion of a having a class with a very low probability and having a low 

standard error associated with that class.  For the model estimated from data without a 
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noise component, finding a higher LL maximum was particularly important because 

the estimated economic quantities were statistically different (P<0.05). For the model 

where noise was included, the estimated economic quantities of the different optima 

were not statistically different between LL maxima found by the two different 

methods. In estimating latent class models, this author recommends that 1000 starting 

points be used with the proposed method to check whether the quantities of interest 

vary between different optima such as the highest LL value and the most frequently 

found optimum. 

 

It was also demonstrated how a grid of heterogeneous Microsoft Windows computers 

could be used to check a large number of starting points. The advantages of using a 

grid of computers are that results were found far more quickly than would be possible 

if a single computer was used. Advantages of the system such as faster results, the 

ability to do more complex estimations and fault tolerance may outweigh the cost of 

learning how to use the system, particularly if the user is familiar with scripting and 

uses software that can be run from the command prompt. Difficulties in setting up a 

grid include access to computing power, technical assistance, dealing with firewalls, 

and licensing costs for the software.  

 

Difficulties in the estimation of state contingent production frontiers by methods such 

as latent class models is problematic due to data requirements, appropriately defining 

states, and ensuring production functions consistent with theory. The latter problems 

can be reduced by using a Bayesian framework to incorporate priors relating to state 

identification and the incorporation of restrictions to ensure estimated production 

functions consistent with expectations and theory. 
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APPENDIX A 

Figure A1: Proposed method on noisy data: Log likelihood frequency, standard error, 

maximum and minimum probability of local optima. 
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Figure A2: Proposed method on noisy data: Log likelihood frequency, standard error, 

maximum and minimum probability of local optima. 
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